
 

 

Abstract— Polymeric materials (microscopic view) are formed 

by long chains having in many cases permanent dipoles in their 

repeating units or structural units. These materials form a class 

of smart materials as they suffer significant deformations under 

electric force fields and for this reason these materials are 

referred as electromechanically active elastomers (EMAE). 

Elastomers are lightweight materials that convert electrical 

energy into mechanical energy and vice-versa. Therefore these 

materials have potential for providing relatively cheap and 

light replacements for mechanical devices such as actuators, 

energy harvesters, robots, and biomedical prostheses. This 

paper is concerned with investigation of the effect of torsion on 

the mechanical response of a solid cylinder in an radial electric 

field on the basis of recently developed general theory of non 

linear electroelasticity.  

 

Index Terms— Electro-sensitive, electro active polymer, 

orsion, Incompressible material. 

 

I. INTRODUCTION 

 

ngineering applications of smart materials or electro 

sensitive (ES) elastomers are quite recent; the 

theoretical foundation of electromechanical interactions 

in solids framework date back to the 1950s and 1960s. In a 

recent series of papers [1-4], Dorfmann and Ogden have 

developed a theory of non-linear magnetoelasticity and 

applied it to a number of simple boundary value problems. 

Other recent developments in this area are described by 

Dorfmann et al. [5], Dorfmann and Brigadnov [6-7], 

Bustamante et al.[8], Ogden [9], Dorfmann et al. [10] and 

the relevant background to the equations governing 

magnetelasticity and electromagnetic-mechanical 

interactions by Maugin [11], Eringen and Maugin [12], 

Brown [13], Kovetz [14], Hutter [15-16] and Hutter et al. 

[17]. 

Electoactive elastomers exhibit a change in size or shape 

when stimulated by an electric field. The most common 

applications of this type of materials are in actuators where 

large deformations are required. Electromagnetic, 

piezoelectric or shape memory alloy actuators are either too 

heavy, too complex or too slow for such applications; 

electroactive polymers (EAP) however are relatively 

lightweight, rather simple and fast enough. As the most 

prospective practical research direction, EAP (Electro active 
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polymers)have been utilizing in artificial muscles and 

refreshable Braille displays has emerged to aid visually 

impaired in fast reading and computer assisted 

communication. 

The need to study the behaviour of new classes of 

polymers or elastomers which are rubber-like materials 

containing distributions of particles that react to 

electric/magnetic fields, in such polymers elastic modulus is 

low enough to allow large deformation.On the basis of 

theory of non-linear magnetoelasticity [1-4], Dorfmann and 

Ogden [18-19] have developed several alternative 

formulation of the equations of nonlinear electroelasticity 

and provide a theoretical framework for the analysis of 

boundary value problems that underpin the applications of 

the associated electromechanical interactions [18]. On the 

basis of this theory Dorfmann and Ogden [19] have solved 

the problems of azimuthal shear response of a thick-walled 

circular cylindrical tube, the extension and inflation 

characteristics of the same tube under a radial or an axial 

electric field (or both fields combined), and the effect of a 

radial field on the deformation of an internally pressurized 

spherical shell. Following the phenomenological approach 

proposed by Dorfmann and Ogden [18-19], Calleja et al. 

[20] have solved the problems of bifurcation namely biaxial 

and uniaxial stretching of a slab under electric field and 

effect of electric field on the inflation of spherical shell. 

Bustamante et al. [8] focused on the 'Maxwell stress' and 

'Total stress' in the quasi-static context, based on the force, 

couple and energy balance equations, with particular 

reference to boundary conditions. Kumar and Kumar [21] 

have studied inhomogeneous deformations in electrosenstive 

materials. 

The practical problems, including torsion given to 

cylinder is a well-known problem in the classical theory of 

finite strain. We do not attempt to provide a complete 

account of the relevant background, but instead refer the 

interested reader to the articles by Singh [22], Demiray and 

Suhubi [23], Kumar and Kumar [24] and books by Green 

and Zerna [25], Ogden [26], Eringen [27]. In this paper,on 

the basis of theory developed in [18-19], we have illustrate 

the effect of torsion on the mechanical response of solid 

circular cylinder in an radial electric field.  

In Section 2, following Dorfmann and Ogden [18-19], we 

summarize briefly the basic electrical and mechanical 

balance laws for time-dependent electric fields. The general 

constitutive law for an isotropic electroelastic material is 

then discussed in Section 3. 

In Section 4, we have examine the effect of torsion on the 

mechanical response of solid circular cylinder in an radial 
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electric field and illustrated the results in Section 5. In 

Section 6, we have compared the results with limiting chain 

extensibility model (Gent’s model ) and exponential strain 

energy model.  

II. BASIC EQUATIONS 

In this section, we recapitulate the basic equations 

formulated by Dorfmann and Ogden [18-19] in nonlinear 

electroelasticity. 

 

(2.1). KINEMATICS 

Consider a reference configuration, denoted 0ß , of the 

material in which a material particle is lebelled by its 

position vector X . This configuration may or may not be 

stress free. Let ß  denote the corresponding deformed 

configuration in which the particle X  has position vector x  

and the deformation is defined by the mapping χ(X)=x  

for 0ßX . The deformation gradient tensor, denoted F ,is  

,= GradF                                                                     (1) 

where Grad is the gradient operator in 0ß . We shall also 

use the notation FdetJ = . By convention we take 0>J . 

 

(2.2). Electric Balance Equations 

When the material is deformed, the electric field variables 

may be defined as Eulerian quantities in the current 

configuration or as Lagrangian fields in the reference 

configuration. In this paper we start with the current 

configuration ß  and define the relevant electric field 

variables as the electric field E , the electric induction D  

and the polarization density P . These vectors are related by 

the standard equation  

,= 0 PED                                                                   (2) 

where the constant 0  is the vacuum electric permittivity 

(see, for example, Kovetz [14]). In vacuum, 0=P  and 

equation (2) simplifies to ED 0= . In a material P  

measures the difference ED 0  and is a material-

dependent property that has to be given by a constitutive 

equation. 

Here, initially, we take the basic variables to be the 

electric field E  and the deformation gradient F . Equation 

(2) then determines the electric induction D  in terms of F  

and the field E  when P  is given by a constitutive equation. 

For time-independent phenomena and in the absence of 

magnetic fields, free currents and free electric charges, the 

vectors E  and D  satisfy the equations  

,=,= 0D0E divcurl                                             (3) 

 obtained by appropriate specialization of Maxwell's 

equations, where, respectively, curl and div are the curl and 

divergence operators in ß . 

The Lagrangian counterparts of the electric field and the 

electric induction, denoted by lE  and lD  respectively, are 

given by  

.=,= 1
DFDEFE Jl

T
l                        (4) 

For details of the derivations of these connections we 

refer to, for example, Dorfmann and Ogden [18] and 

references therein. Standard identities ensure that equations 

(3) are equivalent to  

,=,= 0D0E ll DivCurl                                     (5) 

 provided χ  is suitably regular, where, respectively Curl and 

Div are the curl and divergence operators in 0ß . 

No corresponding pull-back operation for P  arises 

naturally in a similar way. It is convenient, however, to 

define a Lagrangian form of P , here denoted by lP , 

analogous to that for D , by  

.= 1
PFP Jl                                                      (6) 

Using equations (4) and (6) in equation (2) we obtain 

,= 1
0 lll J PEcD                                                      (7) 

where 
1

c  is the inverse of the right Cauchy-Green 

deformation tensor FFc
T= . 

 

(2.3). Mechanical Balance Laws  

Let 0  and  denote the mass densities in the reference 

and current configurations, respectively. Then in terms of 

the notation FdetJ = , the conservation of mass equation 

has the form  

.= 0J                                                      (8) 

If the electric body forces are included with the 'total' 

(Cauchy) stress tensor, denoted by , the equilibrium 

equation in the absence of mechanical body forces may be 

written in the simple form  

,= 0div                                                                    (9) 

 balance of angular momentum ensuring symmetry of 

,i.e., =T
. 

The counterpart of the nominal stress tensor in elasticity 

theory, denoted here by T , for the total stress is defined by  

,= 1
σFT J                                                 (10) 

 and the equilibrium equation (9) may then be written in the 

alternative form  

.= 0TDiv                                                                  (11) 

 

(2.4). Boundary Conditions  

The electric field Let E  and the electric induction vector 

D  satisfy appropriate continuity conditions across any 

surface with in the material or the surface bounded the 

considered material. In the deformed configuration, in the 

absence of surface charge, the standard continuity conditions 

are  

,=][,=].[ 0En0Dn                     (12) 

where a square bracket indicates a discontinuity across the 

surface and n  is normal to the surface. By convention, on 

the material boundary n  is taken to be the outward pointing 

normal. These equations may also be given in Lagrangian 

form (see, for example, [18]), but we omit the details here. 
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For the mechanical quantities the function χ  has to be 

continuous across any surface, as has the total traction vector 

σn . The deformation χ(X)=x  may be prescribed on part 

of the bounded surface of the body, while the total traction 

vector on the remaining part of the surface must be 

continuous. The latter condition is given, in Eulerian form , 

by  

,=][ 0nσ                                                     (13) 

where any applied mechanical traction contributes to the 

traction on the outside. The Maxwell stress there, denoted by 

mσ , must also be accounted for. If the exterior of the body 

is a vacuum, for example, then mσ  is given by  

],).(
2

1
[= 0 IEEEEσm                       (14) 

 where I  is the identity tensor.  

 

III. CONSTITUTIVE EQUATIONS 

To complete the formulation of boundary-value problems 

we need, in addition to the governing equations and 

boundary conditions, appropriate constitutive laws for the 

total stress tensor σ  and for the polarization vector P . 

Following Dorfmann and Ogden [18], we base the 

construction of constitutive laws on the existence of a free 

energy function, which may be regarded as a function of the 

deformation gradient F  and one of the electric field vectors. 

Here, we take the independent variables initially to be F  

and lE , and in, the notation of Dorfmann and Ogden [18], 

we write the free energy ( per unit mass) as  

).,(= lEFΦΦ                                              (15)     

It then follows (See, for example , Kovetz [14] and 

Dorfmann and Ogden [18] that the total Cauchy stress σ  for 

a compressible material is given by  

,= mσ
F

Φ
Fσ                                                   (16) 

where mσ  is given by equation (14). The standard 

requirements of objectivity show that Φ  depends on F  

only through FFc
T= , as in elasticity theory, and 

symmetry of the first term on the right-hand side of equation 

(16) then follows automatically and ensures symmetry of σ . 

Note, however, that the mσ  inside and outside the material 

are in general different since E  is different. In the absence 

of material 0=Φ  and σ  reduces to the Maxwell stress 

(equation (14) ). 

The expression for the polarization vector in Eulerian 

form is given in terms of Φ  by  

.=
lE

FP                                          (17) 

The corresponding Lagrangian forms of stress and 

polarization are obtained on use of equations (6) and (10), 

respectively. However, rather than giving these explicitly we 

now make use of a convenient alternative formulation of the 

constitutive law introduced by Dorfmann and Ogden [18]. 

This requires the definition of an amended ( or 'total') free 

energy, denoted by )(= lFE  and defined per unit 

reference volume ( rather than per unit mass ) within the 

material by  

).(
2

1
= 1

00 llJ EcEΦΩ                              (18) 

 (Note that F , and hence Ω , is not defined outside the 

material.). This allows us to write the total stress tensors σ  

and T  in the compact forms  

.=,= 1

F
T

F

Ω
Fσ J                                     (19) 

 While it is the polarization that is given by equation (17), it 

is now the electric displacement that is given directly in 

terms of Ω . In Eulerian form the polarization and electric 

displacement are given by  

,=,= 1
0

l

J
E

Ω
FDEDP                       (20) 

 and their Lagrangian counterpart by  

.=,= 1
0

l
llll J

E

Ω
DEcDP            (21) 

The expressions listed above for the stresses require 

modification in the case of incompressible materials, which 

are subject to the constraint  

1,= FdetJ                                                         (22) 

 so that equation (18) becomes  

).(
2

1
= 1

00 ll EcEΦΩ                                (23) 

 The total stress tensors in equation (19) are replaced by  

.=,= 1
F

F
TI

F

Ω
Fσ pp                     (24) 

where p  is a Lagrarange multiplier associated with the 

constraint (equation (22)).The expressions for the electric 

induction and the polarization fields given in Eulerian and 

Lagrangian forms by equations (20) and (21), respectively, 

are unchanged but subject to equation (22). 

 

(3.1). Isotropy 

Application of an electric field to an isotropic ES 

elastomer introduces, locally, a preferred direction 

analogous to that arising for transversely isotropic elastic 

solids. Following the analysis of such materials given in 

Spencer [28] and Ogden [29] , for example, we define an 

isotropic ES material as one for which Ω  is an isotropic 

function of c  and ll EE .The form of Ω  is then 

reduced to dependence on the six independent invariants, 

denoted 621 ,....., III  of c  and ll EE .For a 

compressible material, we choose the standard principal 

invariants of c , namely  

,==)],()[(
2

1
=,= 2

3

22

21 JdetItrtrItrI cccc    (25) 

 while for the invariants depending on lE  , we set  
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),(=),(=,|=| 2
6

1
5

2
4 lllll III EcEEcEE  (26)                     

 where tr is the trace of a second-order tensor. Note that 5I  

and 6I  can also be written, respectively, as EE  and 

)_( 1
EbE , where 

T
FFb =  is the left Cauchy-Green 

deformation tensor. The choice in the equation (26) is not, of 

course, unique and one could, for example , replace 
1_c  by 

c  in 5I  and 6I . For incompressible materials the invariant 

13I is omitted. 

For an incompressible isotropic material, therefore, 

),,,,(= 65421 IIIIIΩΩ , and the explicit form of the 

total stress tensor σ  and the electric induction vector D  are  

),(2

2)(22=

11

6

5

2

121

EbEEEbΩ

EEΩIbbΩbΩσ pI
(27)

),2(= 1
654 EbΩEΩbEΩD                            (28) 

 where the subscripts 1,2,4,5,6  on Ω  signify partial 

differentiation with respect to 65421 ,,,, IIIII , 

respectively, and wherein the left Cauchy-Green deformation 

tensor b  is used. 

 

(3.2). Change of Independent Variables  

In the solution of boundary-value problems involving 

non-uniform fields, it may in some circumstances be more 

convenient to select lD  as the independent electric variable 

instead of lE  . This can be done, for example, by defining 

an energy function ),(= lDFΩΩ , complementary to 

Ω  , via the partial Legendre-type transform  

.),(=),( llll EDEFΩDFΩ           (29) 

This requires that the relation (28), or more generally 

equation 2(21)  , be invertible to give lE  in terms of lD  

for each F , a requirement that can be circumvented if one 

starts with a free energy that depends on lD  instead of lE . 

The total stress tensor and the electric field in Lagrangian 

form, for compressible materials, are then simply  

,=,=
l

l
D

Ω
E

F

Ω
T                       (30) 

 and the polarization is still given by equation 1(21)  , but 

now with lD  as the independent variable and lE  given by 

equation 2(30)  . 

For an isotropic material, Ω  depends on the invariants 

321 ,, III  defined in equation (25) and on the three 

invariants based on lD , for which we use the notation 

654 ,, KKK . We choose to define these as                               

).(=),(=,= 2
654 llllll KKK DcDcDDDD        (31) 

 

For an incompressible material, the Eulerian form of the 

total stress σ  and the electric field E  based on Ω  have 

the explicit forms  

),(2

2)(22=

6

5

2

121

DbDbDDΩ

DDΩIbbΩbΩσ pI
(32)

).2(= 65
1

4 bDΩDΩDbΩE                  (33) 

 The polarization is again given by equation 1(20)  with 

lFDD = . Here , we define lΩ to be iI/Ω  for 

1,2=i  and iK/Ω  for 4,5,6=K .  

 

(3.3). The Reference Configuration 

If the material is not subject to any mechanical boundary 

tractions or mechanical body forces then, in general, 

application of an electric field will induce the material to 

deform, a phenomenon known as electrostriction. Let the 

resulting configuration to taken as the reference 

configuration, which we now denote by rß  to distinguish it 

from 0ß . These two reference configurations can be taken 

to coincide if appropriate loads are applied to the body, 

which will result in a (residual) stress distribution throughout 

the material. In such a case we denote the values of DEσ ,,  

and P  in this configuration by 000 ,, DEσ  and 0P , 

respectively. Again we focus on incompressible materials. 

With 13I  and IF =  the invariants (25), (26) and (31) 

reduce to  

.===

,===3,==

00654

0065421

DD

EE

KKK

IIIII
   (34) 

 Then, in terms of Ω  and Ω  the expression for the total 

stress tensor 0σ  simplify to  

,)22(])2[2(= 0065210 EEΩΩIΩΩσ p (35) 

 and 

,)22(])2[2(= 0065210 DDΩΩIΩΩσ p (36) 

 respectively, with iΩ  and iΩ  evaluated for the 

appropriate subset of invariants (34). 

The corresponding expressions for electric field vectors 

may be simplified to defining ),,(3,3,)( 44440 IIII ΩΩ  and 

),,(3,3,)( 44440 KKKK ΩΩ . Then, we obtain the 

specializations of D  in equation (28) and P  as  

,=,)(2= 000004
'
00 EDPEΩD I   (37) 

 where the prime signifies differentiation with respect to 4I . 

Similarly, for E  in equation (33) and P  the 

specializations are  

,=,)(2= 00000400 EDPDΩE K    (38) 

 where the prime signifies differentiation with respect to 

4K  

In this configuration 00,DE  and 0σ  must satisfy the 
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equations  

0.=0,=0,= 000 σDE DivDivCurl  (39) 

 

(3.4). Non-homogeneous Deformations 

For a general boundary-value problem involving non-

homogeneous deformations we are required to solve the 

equations  

0,=0,=0,= σED DivCurlDiv        (40) 

 for the deformation field χ  and grad=E (where  is 

potential function) in respect of the formulation based on 

Ω . In this case, these equations are taken together with  

 

),(2

2)(22=

11

6

5

2

121

EbEEEbΩ

EEΩIbbΩbΩσ pI
  (41) 

 and  

).2(= 1
654 EbΩEΩbEΩD            (42) 

 On the other hand, for the formulation based on 1Ω , 

equations (40) are appended with  

 

),(2

2)(22=

6

5

2

121

DbDbDDΩ

DDΩIbbΩbΩσ pI
(43) 

 and  

).2(= 65
1

4 bDΩDΩDbΩE          (44) 

 In each case appropriate boundary conditions need to be 

specified.  

 

IV. MATHEMATICAL FORMULATION AND SOLUTION 

Consider a long solid circular cylinder of radius A  

composed of an incompressible isotropic hyperelastic 

material subjected to the condition that the cylinder is not 

allowed to stretch axially or contract radially. On using 

cylindrical coordinates ),,( ZR  in the undeformed 

configuration and ),,( zR  in the current configuration, we 

may thus write  

,=,=,= ZzZRr                     (45) 

 where  denote the twist per unit length of the rod. 

The component of matrix of the deformation gradient 

tensor F , denoted by F  is  

,

100

10

001

= RF                                         (46) 

The resulting matrices of the left and right Cauchy-Green 

deformation tensors 
T

FF=b  and FF=c
T

, written b  

and c , are  

 

,

10

10

001

=,

10

10

001

=
22

22

RR

Rc

R

RRb   (47) 

 and the associated principal invariants are, from equation 

(25).  

1.=,3= 3
22

1 IRI                                              (48) 

We focus on the formulation based on Ω  . Since the 

Lagrangian field lE  is the independent electric variable, we 

may choose it to be the field 0E . We take 0E  in the radial 

direction. Then the components of E  in the deformed 

configuration follow from the component form of equation 

EFE
T

l =  as  

0.=,=0,= 0 zr EEEE                                 (49) 

 From equation (26) we then calculate the invariants  

.)(1==,= 4
22

65
2
04 IRIIEI                      (50) 

 The resulting components of , obtained from equation 

(27), are  

),(122= 22
21 Rprr

,)22(

)2(22)(12=

465

2244

2

22

1

I

RRRp

,42= 21pzz                                              (51) 

),(2= 4621 IRz                                   (52) 

 and 0== zrr . From equation (28) the components 

of the vector D  are obtained as                    

0,=rD ,])(12[= 065
22

4 ERD

,)]()(2[= 064 ERRDz                          (53) 

 while equation 1(20)  gives the corresponding components 

of P  as  

  

0,=rP

,])(12[= 00065
22

4 EERP

.)]()(2[= 064 ERRPz                           (54) 

For the considered circular symmetry the equilibrium 

equation 1(40)  and by using equations (51), (52), the 

component of  can be written  

,])22(

)3(2[2=)(

4

1

65

1234

2

2

1

dRR

RRRRR
A

R
rr

 

,)22(

)3(22)(=)(

465

2244

2

22

1

I

RRRRR rr

,2)(=)( 22
2 RRR rrzz                                  (55) 

).(2= 4621 IRz                                   (56) 

The resultant applied moment and axial force necessary to 

maintain deformation are given by  

.)(4=

=

4621

3

0

2

0

2

0

dRIR

dRdRM

A

z

A

                    (57) 

 and  
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dRRRdRdN
A

zz

A 3
10

2

0

2

0
2==  

.)])2(

)/2/4([22

465

2325

2
0

dRRI

RRR
A

                       (58) 

In view of equations (49) and (50) there remain two 

independent variables in , namely R  and 4I . It is 

convenient to define a reduced form of  as a function of 

these two variables only. Accordingly, we define the 

appropriate specialization , denoted , by  

),,,,,(=),( 654214 IIIIIIR                               (59) 

 with equations (49) and (50), it follows that  

,)(1=

),(2=

65

22

44

4621

R

IRR
                            (60) 

where the subscript R  and 4  on  indicate partial 

differentiation with respect to R  and 4  respectively.The 

expressions for z  and D  and P  then simplify to  

.)(2=

,2=,=

004

04

EP

EDRz
                             (61) 

Equation 1(61)  is exactly the same as that arising in 

elasticity theory in the absence of the electric field, but here 

 depends on the electric field through 4I .  

V. ILLUSTRATION 

A simple illustration of the above theory is provided by 

the model  

),(1]
2

1)(
[

)(
= 4

14 I
I

k

I
k

k

                      (62) 

wherein  and  are the function of 4I  and k  is a 

constant such that 
2

1
k . In the absence of the electric 

field 0=4I  with (0)  taken to be 0 , (62) reduces to a 

special class of models considered by Jiang and Ogden [30], 

with 0)(0)(>  being the shear modulus of the material. In 

respect of (62), equation 1(61)  yields  

,]
2

2
)[(2= 1

22

4
k

z

R
IR                              (63) 

 and we note , in particular that this does not involve the 

function . Equation (63) describes shear response of the 

considered class of materials, with the gradient of the z  

vs. R  curve dependent on the electric field strength through 

4I . Thus, )( 4I  characterizes the dependence of the shear 

modulus on the electric field. 

The resulting components of , obtained from equations 

(55) and (56), are  

,]
2

2
)[()(=)( 1

22

4

222 k

rr

R
IRAR   

 ,]
2

2
)[()3(=)( 1

22

4
222 kR

IRAR

 .]
2

2
)[()(=)( 1

22

4
222 k

zz

R
IRAR  (64) 

 and 0== zrr . 

The resultant applied moment necessary to maintain 

deformation are given by using equations (57) and (62)  

.])
2

2
)(([4= 1

22

4
3

0
dR

R
IRM kA

        (65) 

Case 1.  when 1<k  ( for example 3/4=k ). Then 

solution of equation (65) is  

].
21

4

3

)
2

(1

7

)
2

(1

[
)(32

=

4

322
4

722

3
4

AA
I

M      (66) 

Case 2. when 1=k , Then solution of equation (65) is  

).(= 4
4 IAM                                                         (67) 

The result is consistent with the result obtained by Kanner 

and Horgan (31) for neo-Hookean materials. 

Case 3.  when 1>k  ( for example 2=k ), Then solution 

of equation (65) is  

).(]
124

[4= 4

624

I
AA

M                                  (68) 

 Similarly the resultant axial force necessary to maintain 

deformation are given by  

.])
2

2
)(([2= 1

22

4
3

0

2 dR
R

IRN kA
          (69) 

Case 1.  when 1<k  ( for example 3/4=k ), Then 

solution of equation (65) is  
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Case 2. when 1=k , Then solution of equation (65) is  

)/2.(= 4
42 IAN                                               (71) 

 The result is consistent with the result obtained by Kammer 

and Horgan (31) for neo-Hookean materials. 

Case 3.  when 1>k  ( for example 2=k ), Then we get 

the equation  

).(]
124

[2= 4

624
2 I

AA
N                              (72) 

Also the function  , on the other hand, enters the 

expression 2(61)  for D  and the corresponding 

expression for P  form equation 3(61) .In particular, in the 

reference configuration, we have  

2
040040 =,])([2= EIEIP                  (73) 

 This shows that )( 4I  characterizes the polarization in the 

reference configuration or, equivalently, the relation 

between the electric field and the electric displacement.  
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VI. DISCUSSION 

In this paper, we have obtained the exact solution for 

resultant applied moment and resultant axial force for 

different values of k  (equations 66-68 and 70-72).  

 

In Fig. 1, we plot M  for the different models mainly 

Gent's model, HS model, exponential model and compare 

them with the model discussed in this paper. As in all 

models with the increase in A  the curves diverges for all 

values of k . However, due to effect of radial electric field 

the curves for the present model predicts slightly more rapid 

approach towards divergence as compared to small values of 

mJ , J  and soft biological tissues. The results are consistent 

with neo-Hookean model for 1=k . 

 
The resultant axial force are plotted in Fig. 2 and it is 

verified that the resultant axial force required to maintain 

pure torsion is compressive for all the models. In the 

absence of such a force, the bar would be elongate on 

twisting reflecting the celebrated Poynting effect. In Fig. 2 

the compressive axial force for different models are 

compared. The curves for different values of k  shows the 

similar trends to those discussed in Fig. 1 and results are 

consistent with neo-Hookean model for 1=k . 
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