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Abstract—The well known Taylor series method will be 

presented her to derive series approximation to the solution of 
the nonlinear dynamical system of ordinary differential 
equations. The method is applied to the extended Lorenz 
system and it is found that only few terms of the series 
approximation is enough to characterize the chaotic properties 
of the system.  The series estimation is good only for a very 
short period of time. To overcome this problem, the method is 
extended to longer time by taking smaller time steps and 
changing the initial conditions at each time step 

 
 
Index Terms— Analytic solutions, Chaotic system, 
Modified Lorenz system, Taylor series method. 

 
 

1. Introduction 

 Literature is rich with different  methods used to 
construct an approximation to the  analytic solutions for  
nonlinear ordinary or partial differential equations, such 
methods include, but not limited to, the Adomian 
decomposition method [1,2,3,5, 23-29], the Homotopy 
analysis  method (HAM), [4(a),4(b),15,16,17,30,31] , the 
homotopy perturbation method (HPM) [10,11], the 
variational  iteration method (VIM) [7,8,9,12.13,14] and the 
Taylor series method. 
 
 Perturbation techniques are too strongly dependent upon 
the so called “small parameters” [19]. Thus, it is worthwhile 
developing some new analytic techniques independent upon 
small parameters. Liao [15,16,17] proposed such a kind of 
analytic technique, namely the Homotopy Analysis Method 
(HAM) The validity of the Homotopy analysis method  was 
tested by many authors [4,16,17,30,31].  Adomian 
decomposition method and the variational iteration method 
were proven to be a special case of the homotopy analysis 
method.   
 
 Taylor series method is also a very well known old 
method used to solve initial value problems arises in science 
and engineering. It is a very simple technique used to derive 
the series expansion of the solution of the initial value 
problem whether it is linear or nonlinear. 
 The Taylor series method yields, without linearization, 
perturbation, transformation or discretization, an analytical 
solution in terms of an infinite power series with easily 
computable terms. The radius of convergence of the series 
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depends on the type of the differential equation and on the 
number of terms used.  
 
 Our goal in this report is to use the Taylor series method 
to derive an approximation for the analytical solution for the 
chaotic extended Lorenz system. 
  

2. The Taylor series method 

 Taylor series method is a simple techniques used very 
often in the literature to derive solutions for ordinary 
differential equations. For example, when the method is 
applied to the first order ordinary differential equation: 
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With the assumption that the solution of the above initial 
value problem has a unique solution and the solution can be 
represented by the Taylor series of the form: 
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Then substituting the above expansions in the differential 
equations (2.1) yields the following relation for the 

coefficients na  : 
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Accordingly, the series solution will be of the form 
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Then differentiating the series (2.3) with respect to t  
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Then equating the coefficients leads to the following 

recurrence relation for na  
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Then using any available software, such as Mathematica, 
one can easily compute the different terms 

,...,,; 321nan  

3. Application to Lorenz system 

The analysis presented in this paper is based upon the 
extended Lorenz system which was derived in [6] 
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Subject to the initial conditions 
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The variables 11 yx ,  and z are respectively proportional to 

the convective velocity, the temperature difference between 
descending and ascending flows, and the mean convective 
heat flow used to appear in the standard Lorenz system, and 
σ, b and the so-called bifurcation parameter R are real 
constants. Throughout this paper, we set σ = 10, b = −8/3 
and vary the parameter R. It is well-known that chaos sets in 
around the critical parameter value R = 24.75, [6] and [18]. 
Thus for the purpose of comparison, we shall consider two 
cases: R = 20.5 where the system is non-chaotic (in fact, it is 
in the state of transitional chaos) and R = 23.5 where the 
system exhibits chaotic behavior.  
To apply the Taylor series method to solve the above 
system, we write the solution in the form of Taylor series as 
follows: 
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Accordingly, the coefficients nnnnn cbaba  and  ,, ,  can 

be calculated as follows: 
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One of the drawbacks of this method is that the solution 
thus obtained   does not converge for large values of t. To 
overcome this problem we solve the system (3.5) over the 

subintervals ],[],....,,[],,[],,[ 1322110 ttttttttt nn  . 

Accordingly, the initial values 000 ,, zyx will be changed 

for each subinterval.  
 

4. Discussion of the results 

The Taylor series algorithm is coded in the computer 
package Mathematica and The values of the parameters are 
taken to be σ = 10, b = −8/3 and take the initial conditions 
x(0) = 0, y(0) = 1 and z(0) = 0. The time range studied in 
this work is [0, 80]. In addition to the case R = 23.5 which 
corresponds to a chaotic Lorenz system, we also consider 
the case R = 20.5, corresponding to a non-chaotic system, in 
our attempt to demonstrate the accuracy of the method for 
the solutions of both non-chaotic and chaotic systems.  

4.1. Non-chaotic solutions 

First we consider the case R = 20.5 which corresponds 
to non-chaotic case.  The accuracy of the Taylor series 
method was tested by comparing the results with the 
results of the Runge-Kutta method of order 4 using the  
time step Δt = 0.0002. We choose this time step since a 
smaller one is computationally costly, and increasing 
the number of terms in the series solutions   improves 
the accuracy of the solutions, but at the expense of 
increased computational efforts.  The 5-term Taylor 
series solutions on the slightly larger time step 
Δt = 0.0002 Match the Runge-Kutta solutions to at least 
5 decimal places. Obviously, further improvement can 
be made on the accuracy of the 5-term series solutions 
by taking a smaller time step. Figure 1 represents the 
time series solution of x(t), y(t) and z(t) for ]20,0[t  
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for  the series results The x–y, x–z, y–z and x–y–z phase 
portraits obtained  on Δt = 0.025 are also  shown in 
Figure 2.  
 
 
 

 

           Figure (1a) 

  

            Figure (1b) 

    

            Figure 1(a).                           

Figure 1 Time series of the solutions using 5-term Taylor 
series (a) x(t), (b) y(t) and (c) z(t) for R=20.5 

 

 

 

 

Figure 2. Phase portraits using 5-term Taylor series for  
Δt = 0.0001 and  R = 20.5. 

4.2. Chaotic solutions 

The system of equations Eq. 3.4 with R = 23.5 and the other 
parameters as given above exhibits chaotic solutions, and so 
we should expect solutions which are highly sensitive to 
time step. As expected, the solutions of the chaotic system 
become less accurate as time progresses. So based on these 
observations we choose the RK4 solutions on the time step 
Δt = 0.025 as the benchmark for our comparison purposes.  

 

   
 
           Figure (3a) 

  
 
          Figure (3b) 

 

          Figure (3.c) 

Figure3 Time series of the solution using 5-term series 
solutions for Δt = 0.0002 and 400000 points are used.  
R = 23.5. (a) x(t), (b) y(t), and (c) z(t) 

 

 
 
 

Figure 4. Phase portraits for x(t) and y(t) using 5-term series 
solution for  Δt = 0.0002 and R = 23.5. 
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Figure 5: Phase plot of x(t), y(t0 and z(t) for the chaotic 
case. 
 
In Figure 3 we plot the 5-term series solutions on 
Δt = 0.0002. In Figure  5 we reproduce the well-known 
x–y, x–z, y–z and x–y–z phase portraits of the chaotic 
Lorenz system using the 5-term series solutions and 
Δt = 0.0002.  The results presented here indicate that 
the Taylor series method is very efficient in deriving an 
approximation to the analytic solution of the Lorenz 
system for the two cases considered. 
 

5. Conclusion 

 In this paper, the Taylor series method was employed to 
solve the Lorenz system. The method was tested for 8 and 
on the two cases considered. The first case considered was 
the case when R = 20.5 which corresponds to non-chaotic 
case, and the chaotic case corresponds to R = 23.5 was also 
considered.  
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