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Abstract : New DNA, RNA and Protein Sequences develop 
from pre- existing sequences rather than get invented by 
nature from scratch. This fact is the foundation of any 
sequence analysis through stochastic process. If we manage 
to relate a newly discovered sequence to a sequence about 
which something is already known, then chances are that 
the known information applies at least to some extent, to the 
new sequence as well. Further, all biological sequences are 
of evolutionary nature and may require techniques meant 
for evolutionary processes such as Markov models. The 
hidden Markov model is one among such useful tools. An 
example is used to illustrate the usefulness of HMM in 
searching most probable path.  
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I. INTRODUCTION 

 The studies in molecular biology sometimes 
require specific computational procedures on given 
sequence data, e.g., protein folding problem needs 
differential geometry and topology, evolution of 
biological sequences may be addressed using 
probabilistic evolutionary models etc. The procedure or 
the methods of identifying the prokaryotic genes were 
used to be, by extracting all ORFs from the DNA and 
analyzing each of them separately. It would be useful, 
however, if we can design an algorithm that could help us 
to analyze an unannotated DNA sequence directly, 
without making the preprocessing step of extracting all 
possible  ORFs. In this paper an attempt is made to apply 
HMM for searching the most probable DNA sequence 
using hypothetical data. 

II. MARKOV-CHAIN  

     Consider some finite set X of possible states G1, 
G2….. GN. At each of the time point t=1, 2,3……..……. 
a Markov chain occupies one of these states. In each time 
step t to t+1 the process either stays in the same state or 
moves to some other state in X.  It does so in a 
probabilistic way, i.e.  if at time t the process is in state 
Gi, then at time t+1 the process moves to any possible 
state Gj with a certain probability. This probability is 
assumed to depend only on i and j, not on t, or the states 
that the process occupied before state Gi. Now, PGiGj or 
Pij, is used to represent transition probability from state i 
to state j. The meaning is that, if we let the MC run freely, 
then, for every pair i, j, the proportion of observed 
transitions from Gi to Gj among all observed transitions 
from Gi tend to Pij. The probabilities Pij, i,j=1,2 ……. N  
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are called transition probabilities of the Markov chain and 
are arranged in the matrix form given below. 

 
FIGURE I 

TRANSITION PROBITY MATRIX 
 

Suppose that in a set of prokaryotic DNA 
sequences n genes were experimentally identified. Then, 
we can set the connectivity diagram facilitating to the 
calculation of transition probabilities using the below 
mentioned formula.  

 
FIGURE II 

CONNECTIVITY DIAGRAM FOR TRANSITION PROBABILITIES 

 

We may treat this Markov chain as a process of 
generating all possible sequences of any length L ≥2, ie, 
sequences of the form X1, X2….. XL, where Xj ∊ X. In 
order to initiate the process , we need to fix in advance 
the probabilities P(Gj) for all j = 1……….. N (called the 
initialization probabilities) that is N non negative 
numbers that sum up to 1.  

For each j, P(Gj) is the probability of the 
sequence generation process starting at state Gj. Choosing 
these values we mean that  we are imposing the 
conditions like, number  of run of the process goes to 
infinity, the proportion of sequences that starts with Gj  
among all generated sequences tends to P(Gj) for all j = 1, 
2……………… N.  

Next, if we generate a collection of sequences of 
length L and for every pair i, j determine the ratio of the 
number of times for which Gi in the generated sequences 
is immediately followed by Gj and the number of times 
for which Gi is immediately followed by any element 
from the set X. The resulting ratio is required to tend to 
Pij. Then the frequency of a particular sequence x=x1 x2 
………….. xL tends to   

P(x)= P(x1) Px1x2 Px2x3 …….. Pxl-1xl  ……… (2) 

 We call this as the probability of sequence of  x 
and   ∑ Pjሺxሻ ൌ 1ே

௝ୀଵ       …………………….(3) 
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Where summation is taken over all sequences of length L. 

III.HIDDEN MARKOV MODEL: 

 An approach to look for new prokaryotic genes 
requires an extract of all ORFs from the DNA sequence 
in question and need to analyse each ORF separately. It 
would be useful, if we could analyze unannotated DNA, 
sequences directly, without making the preprocessing 
step of extracting all possible ORFs. The need for such an 
algorithm becomes even more clear, if instead of the 
problem of searching for prokaryotic genes, we consider 
the problem of searching for some other DNA features 
that don’t have such well-defined boundaries as genes 
(start  and stop codons). 

Now, to construct such an algorithm, we have to 
model both the sequence composition of genes and that of 
intergenic  regions. One possibility that can be tried is to 
use a model with conectivity shown in Fig. II for genes, 
another model with the same connectivity for intergenic 
regions, allow all possible transitions between the states 
of two models, and then add the “begin “ and “end” 
states. 

This resulting new model is called two block 
model. Here let Ag, Cg, Gg, Tg be the states of first model 
and Aig, Cig, Gig, Tig, be the states of second model. Since 
one has to allow for all possible transitions, the one to one 
correspondence doesn’t remain longer and its 
interdeterminancy arises because of non-availability of 
prior information of the sequence X. In other words, the 
state sequence becomes hidden. Under such situation the 
application of Markov chain becomes a tool for searching 
most probable sequence and it is called Hidden Markov 
Model. 

Definition of HMM:  

 An HMM is an ordinary discrete time Markov 
Chain with states G1, G2 ……… GN , transition 
probabilities P0j , Pij , Pj0 , i,j= 1, 2, 
……………………….N, that in addition, at each state 
emits symbols from an alphabet Q (DNA alphabets, A, C, 
G, T). For each state Gk and each symbol A  Q on 
emission probability qk(a) is specified and for each 
k=1….N, the probability sum up to 1 over all A Q.   

 
IV. MODEL CONSTRUCTION 

 Let x = x1 x2 ………………. Xl be a sequence of 
letters from Q and π = π1 π2 ………………..πl be the 
path of the same length. We will now define the 
probability P(x, π ) as follows  

P(x, π) = P0 π1 qπ1 (x1) Pπ1 π2 qπ2 (x2)… Pπl-1πl qπl (xl) Pπl0  

……………….( 4 ) 

 Which gives the probability of the sequence x 
being generated along the path π.  Since the path of 
biological sequences are not generally known, we need to 
develop an algorithm which will maximize P(x π) over all 
paths π of length equal to the length of x.  By doing so, 
one of the most probable path is often generated as the 
path along which x is generated by the model i.e. 

P(x) =  ∑ Pሺx πሻୟ୪୪  ஠ ୭୤ ୪ୣ୬୥୲୦ ୪    …………….. (5) 

  ∑ Pሺxሻ ൌ 1୶  

 Based on this, the concept of Viterbi algorithm 
is developed. 

Viterbi Algorithm- It is nothing but a dynamic 
programming algorithm designed to determine the most 
probable paths of nucleotides(Nucleic acids of DNA). 

Consider an HMM whose underlying Markov Chain has a 
state set X=[G1………. GN],  end state and transition 
probabilities P0j, Pij,……Pj0, I,j=1……..N, Let 
X=X1………XL be a sequence of letters representing the 
nucleotides of DNA, then define 

VK(1) = P0kqk(X1)  ……………………..……(6)  

for k=1,2…N 

And Vk(i)  = Max P0π1 qπ1(X1) pπ1π2 qπ2 (X2) ……. pπi-2 πi-1 
q πi-1 (Xi-1)  qk(Xi) Pπ-1Gkqk(Xi)  ……………..……..….(7) 

From i=2 ……. L and k=1……N. Then using eqn. (6) 
and (7)  the recursion formula that emerges is  

Vk (i+1) = qk(Xi+1) Max L=1 (VL(i) P0k ……………..….(8) 

 Hence, Vk(i) can be calculated using initial 
condition ie eqn.(6) and recursion formula i.e. eqn. (7). 

Further, using the set Vk(i) and P(X π*)=Max (all π of 
length L) P(x, π) 

Whre P(x,π) = P0π1 qπ1 (X1) Pπ1 π2 qπ2 (X2)  ……….  PπL-1 

πL qπL (XL) PπL0   ……………………..…….(9) 

The above described algorithm is illustrated 
using hypothetical data to identify the most probable path 
of genes. 

 

V. ILLUSTRATION 

Consider the HMM for which Q is the two letter alphabet 
[AB] and CM is given in the fig-1 and the emission 
probabilities are: 

Q1 (A) = 0.5  Q1 (B) =0.5 

Q2 (A) = 0.1  Q2 (B) = 0.9 

Q3 (A) = 0.9  Q3 (B) = 0.1 

 
FIGURE III 

CONNECTIVITY DIAGRAM FOR GENE SEQUENCES 

 

Let x= BAB, and π1= G1=BAB, π2=G2= ABB, π3=G3= 
BBA.  
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Now considering the formula 

Vk (1) = Vok qk (x1) and  
Vk (i+1) = qk (xi+1) l

Max (Vl(i)Plk ) 
 
We have the following calculations,  
  
V1 (1) = 0.2x 0.5= 0.1 = p01q1 (B) 
V2 (1) = 0.3 x 0.9= 0.27 = p02q2 (B)  
V3 (1) = 0.5 x 0.1= 0.05 = p03q3 (B) 
 
V1 (2) = q1 (x2) Max [v1 (1) p11, v2 (1) p21, v3 (1) p31]  
           = 0.5 x Max [0.1 x .3, 0.27 x 0.4, 0.5 x0] 
           = 0.5 x 0.1 x 0.3 = 0.015 
 
V2 (2) = q2(x2) Max [v1 (1) p12, v2 (1) p 22, v3 (1) p32]   
           = 0.1x Max [0.1 x .3, 0.27 x 0.4, 0.5 x0] 
           = 0.1 x 0.27x 0.4 = 0.0108  
 
V3 (2) = q1 (B) Max [v1 (2) p11, v2 (2) p 21, v3 (2) p31]   
           = 0.5x Max [0.015 x .3, 0.0108 x 0.4, 0.0972x0] 
           = 0.5 x 0.015 x 0.3  
           = 0.00225  
 
V1 (3) = q1 (B) Max [v1 (2) p11, v2 (2) p 21, v3 (2) p31]   
           = 0.5x Max [0.015 x 0.3, 0.0108 x 0.4, 0.0972x0] 
           = 0.5 x 0.015 x 0.3  
           = 0.00225 
 
V2(3) = q2 (B) Max [v1 (2) p12, v2 (2) p 22, v3 (2) p32] 
          = 0.9 x Max [0.015 x 0 .3, 0.0108 x 0.4, 0.0972 x 0.3] 
          = 0.9 x 0.0972 x 0.3 
          = 0.026244 
 
V3 (3) = q3 (B) Max [v1 (2) p13, v2 (2) p 23, v3 (2) p33] 
           = 0.1 x Max [0.015 x 0.3, 0.0108 x 0.4, 0.0972 x 0.3] 
           = 0.1 x 0.02916 
           = 0.002916 
 
This gives Max p(x, π) =0.026244 x 0.2 
                                      =0.0052488 
 
If we look at Vk(i) values we find the most probable path  
 
i.e 
Π*=  called Viterbi Path. 

 

VI. CONCLUSION 

 The above illustration indicates that the concept 
of HMM would help us in searching most probable path 
of a gene sequence. 
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