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Abstract—In this paper, the dual reciprocity boundary ele-
ment method (DRBEM) is applied to solve the two-dimensional
double diffusive mixed convection in a lid-driven square
cavity with a square blockage placed at the bottom wall.
Stream function-vorticity-temperature-concentration variables
are used, and vorticity transport, energy and concentration
equations are transformed to modified Helmholtz equations by
utilizing forward difference with relaxation parameters for the
time derivatives. The resulting modified Helmholtz equations
are solved by DRBEM using the fundamental solution 1

2π
K0(x)

whereas in the stream function Poisson’s equation 1
2π

ln(x) is
made use of. This procedure eliminates the need of another
time integration scheme in vorticity transport, energy and
concentration equations, and has the advantage of using large
time increments. The inhomogeneities are approximated by
using coordinate functions f = 1 + r and f = r2 ln r in the
stream function and vorticity-energy-concentration equations,
respectively. Unknown vorticity boundary conditions are also
obtained with the help of coordinate matrix F . The solu-
tions are obtained for different values of Reynolds number,
Richardson number and buoyancy ratio by using constant
boundary elements. The solution reaches to steady-state with
considerably large time increments and suitable values of
relaxation parameters which occur in the argument of Bessel
function K0(x).

Index Terms—DRBEM, mixed convection, thermo-solutal
buoyancy forces, lid-driven cavity.

I. INTRODUCTION

CONVECTION due to heat and mass transfer buoyancy
effects in lid-driven cavities plays an important role

in many engineering applications. The presence of ribs or
obstructions significantly influences the fluid stratification in
the enclosure and hence heat transfer. It is highly essen-
tial to understand the interaction between the inertial and
thermosolutal buoyancy forces on heat and mass transfer
in these applications. Dual reciprocity boundary element
method (DRBEM) is a numerical solution technique which
can treat the nonlinearities in the partial differential equations
by taking them as right hand side functions [1]. The basic
idea of the DRBEM is to approximate the forcing term by a
series of radial basis functions fj which are related to a series
of particular solutions by ∇2ûj = fj . To obtain a particular
solution analytically for the Laplace operator L = ∇2 and
the biharmonic operator L = ∇4 can be done by repeated
integrations [1]. For that reason most of the differential
equations were restricted to the form ∇2 = f(x, y, u, ux, uy)
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when the DRBEM was used [1]. Since this procedure can not
be used directly for the Helmholtz-type operator, different
methods were experienced. A linear combination of thin
plate splines (TPS) was used by Chen and Rashed [2] but
systematic derivation was not given. Then Muleskov, Golberg
and Chen [3] generalized these results. Also, DRBEM has the
advantage of discretizing only the boundary of the problem.
In this study, we use stream function-vorticity form of the
Navier-stokes equations coupled with the energy and concen-
tration equations. By using forward difference for the time
derivative with a relaxation parameter at two consecutive
time levels, vorticity transport, temperature and concentra-
tion equations are transformed to inhomogeneous modified
Helmholtz equations. Thus, DRBEM is carried for these
equations, with the fundamental solution K0(x) of modified
Helmholtz equation whereas in the stream function Poisson’s
equation the fundamental solution ln(x) of Laplace equation
is taken. The radial basis functions fj = r2

j ln rj are used for
the approximation of right hand sides, and the corresponding
particular solutions are obtained. The unknown vorticity
boundary conditions are obtained by using coordinate matrix
in DRBEM. The effect of buoyancy ratio on the convection
phenomenon is discussed. DRBEM application to double
diffusive mixed convection flow in enclosures and over back-
step flow is given in [6].

II. GOVERNING EQUATIONS

The thermo-solutal buoyancy-driven flow is governed by
the equations that represent conservation of mass, momen-
tum, energy and solutal concentration. In stream function
ψ, vorticity w, temperature T and concentration C the
nondimensional equations are

∇2ψ = −w
1
Re
∇2w =

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
−Ri

(
∂T

∂x
+N

∂C

∂x

)
1

RePr
∇2T =

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

1
ReSc

∇2C =
∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
(1)

in which velocity components u, v and vorticity w are
defined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
, w =

∂v

∂x
− ∂u

∂y
. (2)
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Re is the Reynolds number given by Re =
U0H

ν
where U0,

H and ν are characteristic velocity, characteristic length and
the kinematic viscosity, respectively. Ri is the Richardson

number given by
GrT
Re2

where GrT is the Grashof number
due to the thermal diffusion. N is the buoyancy ratio given

by
βC∆C
βT∆T

where βC volumetric solutal concentration

expansion coefficient, βT volumetric thermal expansion
coefficient, ∆C = Ch − Cc (Ch and Cc are high and low
solutal concentrations) and ∆T = Th − Tc (Th are and Tc
high and low temperatures).

First, the time derivatives in the vorticity transport, en-
ergy and solutal concentration equations are approximated
by using the forward finite difference approximation and
writing these unknowns at two consecutive time levels in the
Laplacian terms by using relaxation parameters. This results
in three modified Helmholtz equations

∇2ψ(n+1) = −w(n)

∇2w(n+1) − λ2
ww

(n+1) = − (1− θw)
θw

∇2w(n) − λ2
ww

(n)

+
Re

θw

(
∂ψ(n+1)

∂y

∂w(n)

∂x
− ∂ψ(n+1)

∂x

∂w(n)

∂y

)

−ReRi
θw

(
∂T (n)

∂x
+N

∂C(n)

∂x

)
∇2T (n+1) − λ2

TT
(n+1) = − (1− θT )

θT
∇2T (n) − λ2

TT
(n)

+
RePr

θT

(
∂ψ(n+1)

∂y

∂T (n)

∂x
− ∂ψ(n+1)

∂x

∂T (n)

∂y

)
∇2C(n+1) − λ2

CC
(n+1) = − (1− θC)

θC
∇2C(n) − λ2

CC
(n)

+
ReSc

θC

(
∂ψ(n+1)

∂y

∂C(n)

∂x
− ∂ψ(n+1)

∂x

∂C(n)

∂y

)
(3)

where λ2
w =

Re

∆tθw
, λ2

T =
RePr

∆tθT
, and λ2

C =
ReSc

∆tθC
, and n

indicates iteration number, θ is the relaxation parameter.

III. METHOD OF SOLUTION

The DRBEM will be used for stream function, vorticity-
transport, temperature and concentration equations in (3) by
considering Poisson’s, and modified Helmholtz equations

∇2ψ = b1 (4)

∇2w − λ2
ww = b2 (5)

∇2T − λ2
TT = b3 (6)

∇2C − λ2
CC = b4 (7)

where b1, b2, b3, b4 correspond to previously known right

hand sides, respectively. The right hand side functions are
approximated by radial basis functions fj’s as in [1]

b ≈
K+L∑
j=1

αjfj

where fj = 1 + rj in b1, fj = r2
j ln rj in b2, b3, and b4, and

αj are coefficients which are initially unknown. K and L are
the numbers of boundary and interior points, rj denotes the
distance between the source and field points. The DRBEM
procedure results in matrix-vector equations

Hψ −Gqψ = (HΨ̂−GQ̂ψ)F−1b1

H
′
w +G

′
qw = (H

′
Ŵ +G

′
Q̂w)F

′−1
b2

H
′
T +G

′
qT = (H

′
T̂ +G

′
Q̂T )F

′−1
b3

H
′
C +G

′
qC = (H

′
Ĉ +G

′
Q̂C)F

′−1
b4

(8)

where (K + L) × (K + L) matrices F and F
′

are the
coordinate matrices constructed by taking fj = 1 + rj and
fj = r2

j ln rj as columns, and using rij as the distance
from the point i to j. ψ, w, T, C and qψ, qw, qT , qC
are (K + L) × 1 vectors containing discretized values of
stream function, vorticity, temperature, concentration and
their normal derivatives. Ψ̂, Q̂ψ, Ŵ , Q̂w, T̂ , Q̂T and Ĉ,

Q̂C are (K + L) × (K + L) matrices formed columnwise
from the particular solutions and their normal derivatives for
the equations ∇2ψ̂j = 1 + rj , ∇2ŵj − λ2

wŵj = r2
j ln rj

∇2T̂j − λ2
T T̂j = r2

j ln rj and ∇2Ĉj − λ2
CĈj = r2

j ln rj .
The entries of the matrices H, G, H

′
and G

′
as given as

[1], [4]

Hij = ciδij +
1

2π

∫
Γj

∂

∂n

(
ln
(

1
ri

))
dΓj , (9)

Gij =
1

2π

∫
Γj

ln
(

1
ri

)
dΓj (10)

Hij

′
= ciδij +

1
2π

∫
Γj

∂K0(λri)
∂n

dΓ (11)

Gij
′

= − 1
2π

∫
Γj

K0(λri)dΓ (12)

where Γj is the j-th boundary element and λ refers to λw, λT
and λC for vorticity transport, temperature and concentration
equations, respectively.

The system of equations (8) is solved iteratively with ini-
tial vorticity and temperature values. First, the stream func-
tion equation is solved then velocity vectors are computed by
using newly obtained stream function values. The vorticity
transport, temperature and concentration equations are solved
for the next time level using previous vorticity, temperature
and concentration values. The solution is obtained at steady-
state.

IV. NUMERICAL RESULTS

We solve the thermal-solutal mixed convection flow in
a lid-driven square cavity Ω = [0, 1× 0, 1] with a square
blockage placed at the bottom wall. The no-slip boundary
conditions for velocity are imposed on all the walls of the
cavity and the square blockage with the exception of the
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Fig. 1. The effect of the buoyancy forces for Ri = 0.01, Re = 100

upper lid which moves with a uniform velocity u = 1. The
top lid assumed to be cooled (T = 0) with high solutal
concentration (C = 1). The bottom wall of the cavity except
the square blockage are cooled (T = 0) with low solutal
concentration (C = 0). The adiabatic boundary conditions
are imposed on the vertical walls for both temperature and
solutal concentration.

Boundary conditions for stream function are taken as zero
at the walls due to the no-slip wall conditions of velocities,
and the vorticity boundary conditions are obtained from
the discretization of w = ∂v

∂x −
∂u
∂y by using the DRBEM

coordinate matrix. The boundary of the cavity is discretized
by using K = 286 constant boundary elements, and L =
1066 interior points are used for obtaining the solution and
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Fig. 2. The effect of the buoyancy forces for Ri = 0.1, Re = 100

graphing. The pre-assigned accuracy for reaching steady state
is taken as ε = 10−5. In the numerical solution, relaxation
parameters (θw, θT , θC) for vorticity, temperature and solutal
concentration are taken 0.9, which takes less number of
iterations for reaching steady-state solution. These values
of relaxation parameters indicate that more contribution is
used from the newly obtained solutions. The time increment

∆t = 0.05 is used for reaching steady-state which is very
large compared to the other time discretization schemes.

First, the effect of the buoyancy ratio is given for Ri =
0.01, Re = 100 and Pr = Sc = 1 by using N = −50, 0,
50. From Figure (1) one can see that fluid cores occur in
the cavity even around the blockage when N = 50. When
N decreases from 50 to −50 the center of the fluid core
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Fig. 3. The effect of the buoyancy forces for Ri = 0.01, Re = 200

gets shifted closer to the center of the cavity increasing
the fluid convection. The vorticity which is generated by
the boundaries gets diffused and convected throughout the
cavity for N = −50 and the fluid regime gets divided for
N = 50. These are expected behaviors since for the negative
and positive values of N, buoyancy forces aid and oppose
each other. We can see that remarkable temperature gradients

occur only near the hot square blockage. Also, since the top
lid of the cavity moves from left to right, the temperature
contours are twisted towards left-hand side along the left
corner of the blockage. For concentration, one can see that
there is a boundary layer over the top side of the blockage.
When N decrease from 50 to −50, this boundary layer
becomes thick. These results are remarkably similar to the
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ones in [5]. In the second case, the effect of the buoyancy
ratio is given for Ri = 0.1, Re = 100 and Pr = Sc = 1 by
using N = −50, 0, 50. Figure (2) shows a fluid core at the
center of the cavity and secondary cores for N = −50, 0
around the blockage. But when N = 50 there is a secondary
fluid cell in the cavity. Vorticity behavior is similar to the
first case. When N is increased to N = 0 and N = 50,
boundary layers are more pronounced close to and on the top
lid. When we look at temperature and concentration contours
we see that for N = −50 and N = 0, the behaviors are
almost the same with the previous case. When N = 50
temperature and concentration contours occupie almost all
parts of the cavity with smooth variations. Action around the
blockage is weakened. In the Figure (3) the effect of increase
in Re is visualized. When Re is increased main fluid core is
shifted through upper right corner with the movement of the
upper lid. This behavior is more pronounced for N = 50.
Vorticity forms strong boundary layers close to the upper lid
and at the side walls close to the upper corners. Isotherms
and concentration are not effected much with the increase of
Re.

V. CONCLUSION

DRBEM application to the double diffusive mixed con-
vection flow in cavity with a square blockage at the bottom
wall is presented. DRBEM has the advantage of giving quite
good accuracy with considerably small number of elements
oriented on the boundary only. When the buoyancy ratio is
negative temperature and concentration aid each other while
for positive buoyancy ratio they oppose each other.
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