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Abstract—We show that a class of tent-like maps
on the interval are topologically conjugate to the tent
map and so are as chaotic as the tent map.
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1 Introduction

Let I be a compact interval in the real line and let f :
I −→ I be a continuous map. It is well known [1, 4] that
if f has a periodic point of least period not a power of
2, then there exist a number δ > 0 and an uncountable
subset S of I (called a δ-scrambled set of f) such that,
for any x 6= y in S, we have

lim sup
n→∞

|fn(x)− fn(y)| ≥ δ and lim inf
n→∞

|fn(x)− fn(y)| = 0.

In the theory of chaotic dynamical systems, the tent map
T (x) = 1 − |2x − 1|, 0 ≤ x ≤ 1 is often taken as an
example to demonstrate its chaotic dynamics. In [2],
we mention without proof that the tent map T has the
property that, for any given countably infinite subset X
of [0, 1], T has a dense uncountable invariant 1-scrambled
set Y of transitive points (a transitive point is a point
with dense orbit) in [0, 1] such that, for any points x in
X and y in Y , we have

lim sup
n→∞

|Tn(x)−Tn(y)| ≥ 1

2
and lim inf

n→∞
|Tn(x)−Tn(y)| = 0.

In this note, we present a proof of this fact and extend
the result to a class of tent-like maps.

2 The chaoticity of the tent map T (x)

Let T (x) = 1 − |2x − 1| be the tent map on I = [0, 1].
Let I(0) = [0, 1/2] and I(1) = [1/2, 1]. For αi = 0
or 1, let I(α0α1 · · ·αn) denote a closed subinterval of
I(α0α1 · · ·αn−1) of minimum length ([1, 3]) such that
T (I(α0α1 · · ·αn)) = I(α1α2 · · ·αn). Then, T maps the
endpoints of I(α0α1 · · ·αn) onto those of I(α1α2 · · ·αn)
and maps the interior of I(α0α1 · · ·αn) onto the interior
of I(α1α2 · · ·αn) and the length of each I(α0α1 · · ·αn−1)
is 1/2n. Let Σ2 = {α : α = α0α1α2 · · · , where αi = 0 or
1} be the compact metric space with metric d defined by
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d(α0α1 · · · , β0β1 · · · ) =
∑∞
i=0 |αi − βi|/2i+1 and let σ be

the shift map on Σ2 defined by σ(α0α1α2 · · · ) = α1α2 · · · .
For any α = α0α1α2 · · · in Σ2, let

I(α) =
∞⋂
n=0

I(α0α1 · · ·αn).

Then it is easy to see that each I(α) (⊂ I(α0)) consists
of one point, say I(α) = {xα}, and

T (I(α)) = I(σα).

Furthermore, it is also easy to see that if < α(n) > is
a sequence of points in Σ2 which converges to α, then
< T (xα(n)) > converges to T (xα) in I. Now let 0̄ ∈ Σ2

denote the sequence consisting of all 0’s. Then it is clear
that I(0̄) = {0}. Since T (I(10̄)) = I(0̄) = { 0 } and since
the point 1 is the only point in I(1) = [1/2, 1] mapping
to 0, we obtain that I(10̄) = { 1 } (see [3, Proposition 20]
for a more general case). These facts will be needed in
the proof of Theorem 1 below.

Let m ≥ 5 be a fixed integer and let α = α0α1α2 · · · be
a fixed transitive point in Σ2. Then it is clear that the
unique point xα in I(α) is a transitive point in I. Let

X = {x1, x2, · · · , xn, · · · }

be any given countably infinite subset of I. For each
integer n ≥ 1, there is a (not necessarily unique) element
βn,0βn,1βn.2 · · · in Σ2 such that {xn} = I(xβn,0βn,1βn.2···).

For simplicity, let 01 = 0, 02 = 00, 03 = 000, (01)2 =
0101, (0011)3 = 0011 0011 0011, and so on.

For any integers 0 ≤ i < j and n ≥ 1, let

C(xn, i : j) = βn,iβn,i+1 · · ·βn,j−1 0

and

C∗(xn, i : j) =

{
10j−i, if βn,i = 0,
0j−i+1, if βn,i = 1.

For any element γ = γ0γ1γ2 · · · in Σ2, we define a new
element in Σ2 by putting τγ = (τγ)0(τγ)1(τγ)2 · · · =
α0α1 · · ·αm!−20 Aγ((m+1)!) Aγ((m+2)!) Aγ((m+3)!) · · · ,
where Aγ(k!) = (τγ)k!(τγ)k!+1(τγ)k!+2 · · · (τγ)(k+1)!−1 =
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α0α1α2 · · ·αk!−2 0

γ0(0)(k−1)!−1 γ1(0)(k−1)!−1 · · · γk−1(0)(k−1)!−1

1(0)k!−1

B(x1, 4k!) B(x2, 5k!) · · · B(xk−3, k · k!),

where B(xi, (3 + i)k!) is a finite sequence of 0’s and 1’s
of length k! such that B(xi, (3 + i)k!) =

C(xi, (3 + i)k! : (3 + i)k! + [ 12 (k − 1)!− 1])

· · ·

C(xi, (3 + i)k! + (j − 1)[ 12 (k − 1)! − 1] : (3 + i)k! +
j[ 12 (k − 1)!− 1])

· · ·

C(xi, (3 + i)k! + (k − 1)[ 12 (k − 1)! − 1] : (3 + i)k! +
k[ 12 (k − 1)!− 1])

C∗(xi, (3+i)k!+ 1
2k! : (3+i)k!+ 1

2k!+[ 12 (k−1)!−1)]

· · ·

C∗(xi, (3 + i)k! + 1
2k! + (j − 1)[ 12 (k − 1)!− 1] : (3 +

i)k! + 1
2k! + j[ 12 (k − 1)!− 1])

· · ·

C∗(xi, (3 + i)k! + 1
2k! + (k − 1)[ 12 (k − 1)!− 1] : (3 +

i)k! + 1
2k! + k[ 12 (k − 1)!− 1]).

Let Y = {Tn(xτγ ) : {xτγ} = I(τγ), γ ∈ Σ2, n = 0, 1, 2,
· · · }. Then it is easy to check that the following result
holds.

Theorem 1. Let T (x) = 1 − |2x − 1| be the tent map
defined on [0, 1]. Then for any given countably infinite
subset X of [0, 1], there exists a dense invariant uncount-
able 1-scrambled set Y of transitive points in [0, 1] such
that, for any x ∈ X and any y ∈ Y , we have

lim sup
n→∞

|Tn(x)−Tn(y)| ≥ 1

2
and lim inf

n→∞
|Tn(x)−Tn(y)| = 0.

3 The topologically conjugate class of
tent-like maps

Now assume that, for some point 0 < a < 1, f (= fa)
is a continuous map from [0, 1] onto itself such that (i)
f(0) = 0 = f(1) and f(a) = 1 and (ii) f is strictly
increasing on [0, a] and strictly decreasing on [a, 1]. Note
that the tent map T defined in section 2 is just a special
case of f . We first show that if f satisfies (a) f has a
dense orbit; or (b) f has dense periodic points; or (c) f
has sensitive dependence on initial conditions (i.e., there
exists a positive number δ such that for any point x in

[0, 1] and any open neighborhood V of x there exist a
point y in V and a positive integer n such that |fn(x)−
fn(y)| ≥ δ), then x < f(x) < 1 for all 0 < x < a.

Suppose there is a fixed point 0 < v < a. If f(x) > x
for some 0 < x < v, let u be the smallest fixed point of
f in [x, v]. Since f is strictly increasing on [x, u], every
point in [x, u] is attracted to the fixed point u. So, f
cannot satisfy any one of (a), (b) and (c). If f(x) < x
for some 0 < x < v, let w be the largest fixed point of
f in [0, x]. Since f is strictly increasing on [w, x], every
point in [w, x] is attracted to the fixed point w. So, f
cannot satisfy any one of (a), (b) and (c). Therefore, if
f satisfies any one of (a), (b) and (c), then f is strictly
increasing and x < f(x) < 1 on (0, a), and f is strictly
decreasing and 0 < f(x) < 1 on (a, 1).

Let I(0) = [0, a] and I(1) = [a, 1]. For αi = 0
or 1, let I(α0α1 · · ·αn) be any closed subinterval of
I(α0α1 · · ·αn−1) of minimum length [1, 3] such that
f(I(α0α1 · · ·αn)) = I(α1α2 · · ·αn). Hence, f maps the
endpoints of I(α0α1 · · ·αn) onto those of I(α1α2 · · ·αn)
and maps the interior of I(α0α1 · · ·αn) onto the interior
of I(α1α2 · · ·αn). Consequently,

a /∈ ∪ni=0 int(f i(I(α0α1 · · ·αn)))

= ∪ni=0 int(I(σi(α0α1 · · ·αn))),

where int(J) denotes the interior of the interval J. For
any α = α0α1 · · · in Σ2, let I(α) =

⋂∞
n=0 I(α0α1 · · ·αn).

Then f(I(α)) = I(σα) and each I(α) (⊂ I(α0)) is ei-
ther a nondegenerate compact interval or consists of one
point [3]. Furthermore, if I(α) is a nondegenerate com-
pact interval then a /∈ ∪i≥0 int(f i(I(α))), f maps the
endpoints of I(α) onto the endpoints of f(I(α)) and the
interior of I(α) onto the interior of f(I(α)). Note that
it is shown in [3, Propositions 20 & 21] that I(0̄) = { 0 }
and I(10̄) = { 1 } and, if I(α) ∩ I(β) 6= ∅ for some α 6= β
in Σ2, then for some point p in [0, 1] and some k ≥ 0 and
γi = 0 or 1, 0 ≤ i ≤ k − 1, we have

{α, β} = {γ0γ1 · · · γk−1010̄, γ0γ1 · · · γk−1110̄},

I(α) = I(β) = {p} and fk(p) = a.

Conversely, if

{α, β} = {γ0γ1 · · · γk−1010̄, γ0γ1 · · · γk−1110̄},

then I(α) = I(β) = {p} for some point p and fk(p) = a.
These facts will be needed later.

Assume that I(α) =
⋂∞
n=0 I(α0α1 · · ·αn) is a nonde-

generate interval. Then so is f i(I(α)) for every i ≥ 0
since f is not constant on any interval. Since a /∈ ∪i≥0

int(f i(I(α))), f i is strictly monotonic on I(α) for every
i ≥ 1. Assume that f satisfies any one of (a), (b) and
(c), and assume that, for some integer m ≥ 1, fm(I(α))
is a nondegenerate interval such that int(fm(I(α)))∩
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int(I(α)) 6= ∅ (this happens when f satisfies (a) or (b)).
Then fm(I(α)) = I(α) and fm maps the endpoints of
I(α) onto itself and fm is monotonic on I(α). By re-
sorting to f2m if necessary, we may assume that fm is
increasing on I(α) and fixes both endpoints of I(α). But
then, one endpoint of I(α) which is a fixed point of fm

attracts all points of int(I(α)) (under fm) which clearly
contradicts the assumption that f satisfies any one of (a),
(b) and (c). If f satisfies (c) and f i(I(α)) and f j(I(α))
have disjoint interiors whenever i 6= j, then since the
interval [0, 1] has finite length, we must have limn→∞
diameter(fn(I(α))) = 0 which contradicts the assump-
tion that f has sensitivity. This shows that if f satisfies
any one of (a), (b) and (c), then I(α) consists of exactly
one point for every α in Σ2 and every point of [0, 1] be-
longs to I(α) for some (not necessarily unique) α in Σ2.

In the following, assume that f satisfies any one of (a),
(b) and (c). For the sake of clarity, we write If (α) in-
stead of I(α) to emphasize the role of f . For every x
in [0, 1], there is an α in Σ2 such that If (α) = {x}. If
there is another β 6= α in Σ2 such that If (β) = {x},
then it follows from the above that, for some k ≥
0, {α, β} = {γ0γ1 · · · γk010̄, γ0γ1 · · · γk110̄}. But then
IT (α) = IT (β) = {w} for some w with T k(w) = 1/2. So,
the map ψ : [0, 1] → [0, 1] defined by letting ψ(If (α)) =
IT (α) is well-defined (cf. [3, Theorem 22]). It is easy
to see that ψ is a homeomorphism such that ψ(0) =
0, ψ(a) = 1/2, ψ(1) = 1 and (ψf)(If (α)) = ψ(f(If (α)))

ψ(If (σα)) = IT (σα) = TIT (α) = (Tψ)(If (α)).

Therefore, f is topologically conjugate to T through ψ.
This, together with Theorem 1 above, implies the follow-
ing result.

Theorem 2. Let 0 < a < 1 and let f be a continuous
map from [0, 1] onto itself such that (i) f(0) = 0 = f(1)
and f(a) = 1 and (ii) f is strictly increasing on [0, a]
and strictly decreasing on [a, 1]. Then the following state-
ments are equivalent:

(a) f has a dense orbit.

(b) f has dense periodic points.

(c) f has sensitive dependence on initial conditions.

Furthermore, if f has a dense orbit, then f is topologi-
cally conjugate to the tent map T (x) = 1 − |2x − 1| on
[0, 1] and, for any countably infinite subset X of [0, 1], f
has a dense uncountable invariant 1-scrambled set Y of
transitive points in [0, 1] such that, for any x ∈ X and
y ∈ Y , we have

lim sup
n→∞

|fn(x)− fn(y)| ≥ min{a, 1− a}

and
lim inf
n→∞

|fn(x)− fn(y)| = 0.
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