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On the Chaoticity of a Class of Tent-like Interval
Maps
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Abstract—We show that a class of tent-like maps
on the interval are topologically conjugate to the tent
map and so are as chaotic as the tent map.
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1 Introduction

Let I be a compact interval in the real line and let f :
I — I be a continuous map. It is well known [1, 4] that
if f has a periodic point of least period not a power of
2, then there exist a number § > 0 and an uncountable
subset S of I (called a d-scrambled set of f) such that,
for any = # y in S, we have

timsup | (z) — /" (4)] = & and Tminf |f"(z) - " (5)] = 0.

In the theory of chaotic dynamical systems, the tent map
T(x) =1—22 —1], 0 < z < 1 is often taken as an
example to demonstrate its chaotic dynamics. In [2],
we mention without proof that the tent map T has the
property that, for any given countably infinite subset X
of [0, 1], T has a dense uncountable invariant 1-scrambled
set Y of transitive points (a transitive point is a point
with dense orbit) in [0, 1] such that, for any points x in
X and y in Y, we have

lim sup [T (z) — " (y)] >

1
n—oo - 2

and liminf |T"(z)—T"(y)| = 0.
In this note, we present a proof of this fact and extend
the result to a class of tent-like maps.

2 The chaoticity of the tent map 7'(x)

Let T(x) = 1 — |2z — 1] be the tent map on I = [0,1].
Let I(0) = [0,1/2] and I(1) = [1/2,1]. For a; = 0
or 1, let I(apay---v,) denote a closed subinterval of
I{agay -+ - ap—q) of minimum length ([1, 3]) such that
T(I(apar - ay)) = I(agag -+ ). Then, T maps the
endpoints of I(apag - - - ay,) onto those of I(ayag -+ - aw,)
and maps the interior of I(apa; - - ;) onto the interior
of I{ayag - - - ay) and the length of each I(apay -+ ap—1)
is 1/2™. Let X9 = {a: @ = apajaz -+, where o; =0 or
1} be the compact metric space with metric d defined by

~
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d(agor -+, Bofr-+) =D lag — Bi]/2iF1 and let o be
the shift map on X5 defined by o(apaias--+) = ajag - -.
For any a = apgajas - -+ in Yo, let

I(a) = ﬂ Iagay - - ay).
n=0

Then it is easy to see that each I(a) (C I(a)) consists
of one point, say I(«) = {z,}, and

T(I(a)) = I(oa).

Furthermore, it is also easy to see that if < a(n) > is
a sequence of points in Yo which converges to «, then
< T(a(n)) > converges to T'(x,) in I. Now let 0 € ¥y
denote the sequence consisting of all 0’s. Then it is clear
that I(0) = {0}. Since T'(I(10)) = I(0) = {0} and since
the point 1 is the only point in I(1) = [1/2,1] mapping
to 0, we obtain that I(10) = {1} (see [3, Proposition 20]
for a more general case). These facts will be needed in
the proof of Theorem 1 below.

Let m > 5 be a fized integer and let a = agaias -+ be
a fized transitive point in ¥o. Then it is clear that the
unique point z, in I(«) is a transitive point in I. Let

X:{Jfl,xQ,"' ax’ru"'}

be any given countably infinite subset of I. For each
integer n > 1, there is a (not necessarily unique) element
Bn,08n,18n.2 -+ in Xy such that {z,} = I(25, (8,.180.-)-

For simplicity, let 0! = 0,02 = 00,0° = 000, (01)% =

0101, (0011)3 = 00110011 0011, and so on.

For any integers 0 <¢ < j and n > 1, let

C(xn,i:7) = Bnibnit1 - Bnj-10

and
10971,

% .. if /Bn,i =0,
C*(xp,i:j) = {Oj—i—H

if B, = 1.

For any element v = v9y172 -+ in Yo, we define a new
element in ¥y by putting 7, = (74)o(7)1(7y)2 - - =
Q01 -+ Ami—20 Ay (m4+1)1) A, (m+2)1) A, ((m+3)))- -,

where A (k!) = (7 )kt (Ty) k141 (T k142 - - (T’Y)(k+1)!_%N:(:E »012
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oo g -+ - a—2 0
Yo(0) D=1 (0) (=11 Ly (0) (B DIT
1(O)k!—1

B(Il,4k') B($2,5]€') B(:Ek_g,kk'),

where B(z;, (3 4 4)k!) is a finite sequence of 0’s and 1’s
of length k! such that B(z;, (3 +1i)k!) =

Clzi, 3+ 0k : B+ i)kl + [3(k— 1)1 = 1])

-[1(5(93{31(3 j;]g')k! + (G -DEE -1 —1]: B+ i)k +
Jlzlk =1l =

Clai, B+ i)k 4+ (k= D5k = 1)1 = 1] : (34 0)k! +
k[3(k—1)! —1])

C* (i, (3+1i)k!+ 2kl - B+40)k!+ k1 + [ (k—1)!—1)]

C*(zi, B+ k! + SR+ (G- D[F(k—1)!—1]: 3+
Dk + Sk + G2 (k- 1)1 = 1))

C*(zi, B+ )k + 3k + (k= D[ (k- 1)1 =1]: 3+
i)kl + Lk + k[ (k — 1)1 = 1]).

Let Y = {T"(z,) : {zr, } = I(7),7 € ¥2,mn =0, 1, 2,
.-+ }. Then it is easy to check that the following result
holds.

Theorem 1. Let T(x) = 1 — |2z — 1| be the tent map
defined on [0,1]. Then for any given countably infinite
subset X of [0,1], there exists a dense invariant uncount-
able 1-scrambled set Y of transitive points in [0,1] such
that, for any x € X and any y € Y, we have

1
limsup |T"(z) = T" (y)| > 3

n—oo

and liminf |T"(z)—T"(y)| = 0.

n— oo

3 The topologically conjugate class of
tent-like maps

Now assume that, for some point 0 < a < 1, f(= f,)
is a continuous map from [0, 1] onto itself such that (i)
f(0) =0 = f(1) and f(a) = 1 and (ii) f is strictly
increasing on [0, a] and strictly decreasing on [a, 1]. Note
that the tent map 7" defined in section 2 is just a special
case of f. We first show that if f satisfies (a) f has a
dense orbit; or (b) f has dense periodic points; or (¢) f
has sensitive dependence on initial conditions (i.e., there

[0,1] and any open neighborhood V of z there exist a
point y in V' and a positive integer n such that |f™(z) —
f"(y)] = 6), then x < f(z) <1lforall 0 <z < a.

Suppose there is a fixed point 0 < v < a. If f(z) >
for some 0 < z < v, let u be the smallest fixed point of
f in [z,v]. Since f is strictly increasing on [z,u], every
point in [z,u] is attracted to the fixed point w. So, f
cannot satisfy any one of (a), (b) and (c). If f(z) < z
for some 0 < = < v, let w be the largest fixed point of
fin [0,z]. Since f is strictly increasing on [w,z], every
point in [w,z] is attracted to the fixed point w. So, f
cannot satisfy any one of (a), (b) and (c). Therefore, if
f satisfies any one of (a), (b) and (c), then f is strictly
increasing and z < f(z) < 1 on (0,a), and f is strictly
decreasing and 0 < f(z) < 1 on (a,1).

Let I(0) = [0,a] and I(1) = Ja,1]. For a; = 0
or 1, let I(apay - -ay,) be any closed subinterval of
I(apay -+~ ap—1) of minimum length [1, 3] such that
fI(war -+ ) = I(agas - -+ ay). Hence, f maps the
endpoints of I(agaq -+ - ay) onto those of I(ajag -+ - ay)
and maps the interior of I(aga; - - ;) onto the interior
of I(anas - - - ). Consequently,

a ¢ Uy int(f'(I(aoor - o))

= U, int(I(o"(agar -+~ o)),

where int(J) denotes the interior of the interval J. For
any a = apay -+ in Bo, let I(a) = L, I(apar - - ay).
Then f(I(a)) = I(ca) and each I(a)(C I(ap)) is ei-
ther a nondegenerate compact interval or consists of one
point [3]. Furthermore, if I(«) is a nondegenerate com-
pact interval then a ¢ U;>¢ int(f(I(a))), f maps the
endpoints of I(a) onto the endpoints of f(I(«)) and the
interior of I'(«) onto the interior of f(I(«)). Note that
it is shown in [3, Propositions 20 & 21] that 1(0) = {0}
and I1(10) = {1} and, if I(«) N I(B) # 0 for some o # 3
in X9, then for some point p in [0, 1] and some k > 0 and
v =0o0r1l,0<¢<k-—1, we have

{a, 8} = {071 -+ %-1010, Yoy1---7k-1110},

I(a) =1(8) = {p} and f*(p)=a.

Conversely, if

{a, 8} = {7071 - 7%=1010, ~yoy1 - Y%—1110},

then I(a) = I(3) = {p} for some point p and f*(p) = a.
These facts will be needed later.

Assume that I(a) = [, I(apar---a;,) is a nonde-
generate interval. Then so is f'(I(«)) for every i > 0
since f is not constant on any interval. Since a ¢ U;>
int(fi(I(a))), f* is strictly monotonic on I(a) for every
i > 1. Assume that f satisfies any one of (a), (b) and
(¢), and assume that, for some integer m > 1, f™(I(a))

exists a positive number ¢ such that for any point x in
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int(I(a)) # 0 (this happens when f satisfies (a) or (b)).
Then f™(I(e)) = I(«) and f™ maps the endpoints of
I(«) onto itself and f™ is monotonic on I(a). By re-
sorting to f2™ if necessary, we may assume that f™ is
increasing on I(«) and fixes both endpoints of I(«). But
then, one endpoint of I(«) which is a fixed point of f™
attracts all points of int(I(«)) (under f™) which clearly
contradicts the assumption that f satisfies any one of (a),
(b) and (c). If f satisfies (c) and f*(I(«)) and f7(I(c))
have disjoint interiors whenever ¢ # j, then since the
interval [0,1] has finite length, we must have lim,
diameter(f™(I(«))) = 0 which contradicts the assump-
tion that f has sensitivity. This shows that if f satisfies
any one of (a), (b) and (c¢), then I'(«) consists of exactly
one point for every « in X9 and every point of [0, 1] be-
longs to I(«a) for some (not necessarily unique) « in ¥s.

In the following, assume that f satisfies any one of (a),
(b) and (c). For the sake of clarity, we write I¢(a) in-
stead of I(a) to emphasize the role of f. For every z
in [0,1], there is an « in X9 such that I;(a) = {z}. If
there is another 5 # « in 3y such that I;(8) = {z},
then it follows from the above that, for some k& >
0, {o,8} = {vom - -7%010,%7y1 - --7,110}. But then
Ir(a) = I7(B) = {w} for some w with T*(w) = 1/2. So,
the map ¢ : [0,1] — [0, 1] defined by letting ¢(If(a)) =
Ir(a) is well-defined (cf. [3, Theorem 22]). It is easy
to see that 9 is a homeomorphism such that (0) =

0,¢(a) = 1/2,4(1) = 1 and (f)(Iy()) = »(f(I;(a)))
b(If(oa)) = Ir(oa) = TIr(a) = (TY)(I;(a)).

Therefore, f is topologically conjugate to T through .
This, together with Theorem 1 above, implies the follow-
ing result.

Theorem 2. Let 0 < a < 1 and let f be a continuous
map from [0,1] onto itself such that (i) f(0) =0 = f(1)
and f(a) = 1 and (i) f is strictly increasing on [0, al
and strictly decreasing on [a,1]. Then the following state-
ments are equivalent:

(a) f has a dense orbit.
(b) f has dense periodic points.

(¢) f has sensitive dependence on initial conditions.

Furthermore, if f has a dense orbit, then f is topologi-
cally conjugate to the tent map T(z) = 1 — |2z — 1] on
[0,1] and, for any countably infinite subset X of [0,1], f
has a dense uncountable invariant 1-scrambled set Y of
transitive points in [0,1] such that, for any x € X and
y €Y, we have

limsup |f"(x) — f"(y)| > min{a,1 — a}

n—oo

and
lim inf |7 (z) — " (s)] = 0.
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