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Abstract — We consider on efficient and stable so-
lution for linear systems by product-type iterative
methods. By means of improvement on ordering of
Lanczos and stability polynomials which construct al-
gorithm of product-type BiCG method, we derive
new algorithm based on BiCGSafe method with safety
convergence. We will apply the proposed BiCGSafe
method to solve linear systems which appeared in a
variety of realistic problems. Through numerical ex-
periments, we will make clear that the proposed vari-
ants of BiCGSafe method have an excellent conver-
gence rate.
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1 Introduction

After appearance of CGS[5] and BiCGStab[7] methods,
a number of iterative methods based on Lanczos poly-
nomial added with auxiliary polynomial were proposed
independently [8]. Then strategy of combination of two
polynomials was generalized as a form of product of two
polynomials in 1997[9]. However, the optimization of
product of polynomials remains as an open problem.
The first solution among naive realization of product-
type iterative methods was made partly by Fujino et al.
in 2005 [2] because of adoption of associate residual in
place of residual for decision of undetermined two pa-
rameters. They found out a clue in the ordering of devel-
oping of polynomials. As a result, they succeeded fairly
in reduction of instability of convergence. They referred
BiCGSafe method in view of safety convergence. With
the same strategy, i.e., adoption of associate residual,
variants of GPBiCG method were produced such as GP-
BiCG AR in 2009 [3].

On the other hand, different approach exists also, e.g.,
an approach of two-term recurrence proposed by prof.
Rutishauser in 1959 [4]. Recently K. Abe and G. Slei-
jpen [1] applied it to improvement of some variants of
GPBiCG method. However, some variants succeeded in,
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some variants may failed out in view of convergence rate
and stability of convergence.

In this paper, we derive variants of BiCGSafe method [2]
by means of considering on ordering of Lanczos and sta-
bility polynomials which construct algorithm of product-
type BiCG method. This paper is organized as follows.
In section 2 we describe derivation of variants of BiCG
method, and estimate the computational cost. In section
3, safety convergence of variants of BiCGSafe method
will be demonstrated by numerical experiments, and in
section 4 finally we will draw some conclusions.

2 Derivation of variants of BiCGSafe
method

We will focus on the iteration solution of a linear system
of equations

Ax = b (1)

in which A is a non-singular real n× n matrix and b is a
given real n-vector. Starting from some initial guess x0

for the solution, BiCG(Bi-Conjugate Gradient) method
generates a sequence xk with the property that the kth
residual rk := b − Axk lies in the Krylov subspace gen-
erated by A from r0, i.e.,

rk ∈ Kk+1 := span(r0, Ar0, · · · , Akr0). (2)

The sequence of residual polynomials Rk are defined by

rk := Rk(A)r0 (3)

and polynomials Rk(λ) are refered to as the so-called
Lanczos polynomials.

In the standard treatment of the BiCG method, second
polynomials Pk(λ) play a role, and are defined by

pk := Pk(A)r0. (4)

We note that the basic recurrence relations between
Rk(λ) and Pk(λ) hold as follows:

R0(λ) = 1, P0(λ) = 1, (5)

Rk+1(λ) = Rk(λ)− αkλPk(λ), (6)
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Pk+1(λ) = Rk+1(λ) + βkPk(λ), k = 1, 2, . . . . (7)

Then we can introduce the three-term recurrence rela-
tions for Lanczos polynomials Rk(λ) only by eliminating
Pk(λ) from eqns. (5) and (7) as follows:

R0(λ) = 1, R1(λ) = (1− α0λ)R0(λ), (8)

Rk+1(λ) = (1 +
βk−1

αk−1
αk − αkλ)Rk(λ)

−βk−1

αk−1
αkRk−1(λ), k = 1, 2, . . . . (9)

S.-L. Zhang [9] discovered that an often excellent conver-
gence property can be gained by choosing for stability
polynomials Hk(λ) that are built up in the three-term
recurrence of form as polynomial Rk(λ) in eqns. (8) and
(9) by adding suitable undetermined parameters ζk and
ηk as follows:

H0(λ) = 1, H1(λ) = (1− ζ0λ)H0(λ), (10)

Hk+1(λ) = (1 + ηk − ζkλ)Hk(λ)

−ηkHk−1(λ), k = 1, 2, . . . . (11)

By reconstruction of eqn. (9) using the stability polyno-
mials Hk(λ) and Gk(λ), we have the following coupled
two-term recursion of the form as

H0(λ) = 1, G0(λ) = ζ0, (12)

Hk(λ) = Hk−1(λ)− λGk−1(λ), (13)

Gk(λ) = ζkHk(λ) + ηkGk−1(λ), k = 1, 2, . . . .(14)

3 Algorithm of variants of BiCGSafe
method

We derived the algorithm of BiCGSafe method by devel-
oping firstly Lanczos polynomial Rk+1(A) in the resid-
ual vector rk := Hk+1(A)Rk+1(A)r0. In this section,
we consider on developing of three auxiliary polynomi-
als of Hk+1(λ)Pk+1(λ), λGk(λ)Pk(λ) and Gk(λ)Rk+1(λ).
For reduction of computational cost, we develop firstly
Pk(λ) in the update formula of auxiliary polynomial
λGk(λ)Pk(λ) as below.

λGk(λ)Pk(λ) = λGk(λ)(Rk(λ) + βk−1Pk−1(λ))

= λGk(λ)Rk(λ) + βk−1λ(ζkHk(λ)

+ηkGk−1(λ))Pk−1(λ)

= λGk(λ)Rk(λ)

+βk−1(ζkλHk(λ)Pk−1(λ)

+ηkλGk−1(λ)Pk−1(λ)). (15)

We develop the following auxiliary polynomials
λGk(λ)Rk(λ) and λkHk(λ)Pk−1(λ).

λGk(λ)Rk(λ) = λ(ζk(λ)Hk(λ) + ηkGk−1(λ))Rk(λ)

= ζkλHk(λ)Rk(λ)

+ηkλGk−1(λ)Rk(λ), (16)

λHk(λ)Pk−1(λ) = λ(Hk−1(λ)− λGk−1(λ))Pk−1(λ)

= λHk−1(λ)Pk−1(λ)

−λ(λGk−1(λ)Pk−1(λ)). (17)

Here we introduce the following auxiliary vectors.

pk := Hk(A)Pk(A)r0, (18)

uk := AGk(A)Pk(A)r0, (19)

zk := Gk(A)Rk+1(A)r0, (20)

yk+1 := AGk(A)Rk+1(A)r0, (21)

qk := AGk(A)Rk(A)r0, (22)

tk := AHk(A)Pk−1(A)r0. (23)

We get three auxiliary vectors by substituting auxiliary
vectors qk, tk into eqns. (15)-(17).

uk = qk + βk−1(ζktk + ηkuk−1), (24)

qk = ζkArk + ηkyk, (25)

tk = Apk−1 −Auk−1 (26)

Moreover, we can modify Apk and yk+1 by the auxiliary
vectors qk and tk as below.

Apk = Ark + βk−1(Apk−1 −Auk−1)

= Ark + βk−1tk, (27)

yk+1 = ζkArk + ηkyk − αkAuk

= qk − αkAuk. (28)

Similarly we can modify the residual vector rk+1 by using
the auxiliary vectors qk and tk.

rk+1 = rk − αkApk − yk+1 (29)

= rk − αktk − qk. (30)

On the other hand, by using the update formula for as-
sociate residual a rk := Hk+1(A)Rk(A)r0,

Hk+1(λ)Rk(λ) = Hk(λ)Rk(λ)− ζkλHk(λ)Rk(λ)

−ηkλGk−1(λ)Rk(λ) (31)

we determine two parameters ζk, ηk from the local mini-
mization of 2-norm of the associate residual vector a rk
as follows:

||a rk||2 = ||rk − ζkArk − ηkyk||2. (32)

From the above derivation, we can present the algo-
rithms as follows: We refer to these algorithms as
BiCGSafe variant 1 ( abberivated as BiCGSafe var 1 )
and BiCGSafe variant 2 ( abberivated as BiCGSafe var 2
) methods. We show difference between BiCGSafe var 1
method and BiCGSafe var 2 method in the update for-
mula for residual vector rk+1 as eqns. (48) and (49).
The underlined update procedures differ from that of the
algorithm of BiCGSafe method.
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Algorithms of BiCGSafe var 1(var 2) methods

x0 is an initial guess, r0 = b−Ax0,

Choose r∗0 such that (r∗0, r0) ̸= 0, β−1 = 0,

for k = 0, 1, · · · until ||rk|| ≤ ε ||r0||
pk = rk + βk−1(pk−1 − uk−1), (33)

Compute Ark, (34)

Apk = Ark + βk−1tk, (35)

αk =
(r∗0, rk)

(r∗0, Apk)
, (36)

ak = rk, bk = yk, ck = Ark, (37)

ζk =
(bk, bk)(ck,ak)− (bk,ak)(ck, bk)

(ck, ck)(bk, bk)− (bk, ck)(ck, bk)
, (38)

ηk =
(ck, ck)(bk,ak)− (bk, ck)(ck,ak)

(ck, ck)(bk, bk)− (bk, ck)(ck, bk)
, (39)

(if k = 0, then ζk =
(ck,ak)

(ck, ck)
, ηk = 0) (40)

qk = ζkArk + ηkyk, (41)

uk = qk + βk−1(ζktk + ηkuk−1), (42)

zk = ζkrk + ηkzk−1 − αkuk, (43)

Compute Auk, (44)

yk+1 = qk − αkAuk, (45)

tk+1 = Apk −Auk, (46)

xk+1 = xk + αkpk + zk, (47)

rk+1 = rk − αkApk − yk+1, (48)

(= rk − αktk − qk), (49)

βk =
αk

ζk
· (r

∗
0, rk+1)

(r∗0, rk)
, (50)

end for

4 Numerical experiments

All computations were done in double precision floating
point arithmetic, and performed on Dell PowerEdge R210
II(CPU: Intel Xeon E3-1220, clock: 3.1GHz, memory:
8Gbytes, OS: Scientific Linux 6.0). Compiler of Intel
Fortran Compiler version 11.0 is used. All codes were
compiled with the “-O3” optimization option. The right-
hand side b was imposed from the physical load condi-
tions. The stopping criterion for successful convergence
of the iterative methods is less than 10−12 of the rela-
tive residual 2-norm ||rk+1||2/||b − Ax0||2. In all cases
the iteration was started with the initial guess solutions
x0 = 0. The maximum number of iterations is fixed as
104. Matrices are normalized with diagonal scaling. The
initial shadow residual r∗0 is equal to the initial residual
r0(= b−Ax0). All matrices are taken from Florida sparse
matrix collection[6].

We examined performance and stability of convergence of
GPBiCG, GPBiCG v1 ( Abe-Sleijpen GPBiCG variant-
1 ), GPBiCG v2 ( Abe-Sleijpen GPBiCG variant-2 ),

BiCGSafe, BiCG-Safe var 1 and BiCGSafe var 2 meth-
ods with ILU(0) preconditioning without extra fill-ins.

Table 1 shows the numerical results of GPBiCG, GP-
BiCG v1, GPBiCG v2, BiCGSafe, BiCGSafe var 1 and
BiCGSafe var 2 methods. “pre-t.” means computation
time of making preconditioner, “itr-t.” means iteration
time and “tot-t.” means total time in seconds. “ratio”
means the ratio of computation time of GPBiCG method
to that of each iterative method. “max” denotes non-
convergence until iterations reach at the maximum iter-
ation counts. “TRR” (True Relative Residual) means a
value of ||b−Axn+1||2/||b−Ax0||2 for the approximate
solution xn+1. The bold figures implies the fastest case
for each matrix.

We can see the following facts from Table 1.

• BiCGSafe var 1 and BiCGSafe var 2 methods out-
perform among the tested iterative methods in view
of both computation time for successful convergence.

• Performance of GPBiCG v1 and GPBiCG v2 meth-
ods is poor.

• Though TRR of BiCGSafe method for matrix bcir-
cuit is slightly poor, TRRs of BiCGSafe- var 1 and
BiCGSafe var 2 methods are good.

5 Conclusions

We derived algorithms of two variants of BiCGSafe
method, i.e., BiCGSafe var 1 and BiCGSafe var 2 meth-
ods. Moreover we examined performance and robust-
ness of convergence of these iterative methods through
numerical experiments. As a result, it turned out that
BiCGSafe var 1 and BiCGSafe var 2 methods work well
from the viewpoint of convergence rate and accuracy of
the approximate solution.
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