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Periodic Solution ofa Non-autonomous Neutral
Delay Two-species Competitive System

Wenxiang Zhang, Kaihua Wang, and Zhanji Guifember, IAENG

Abstract—The purpose of this paper is to investigate the
existence of periodic solution of a general neutral delay two-
species competitive non-autonomous system. With the help of
the continuation theorem for composite coincidence degree and
some techniques, a set of sufficient conditions are derived for
the existence of at least one strictly positive periodic solution.
Furthermore, some numerical simulations demonstrate our
results.

Index Terms—Periodic solution, Neutral delay, Continuation

In this paper, we consider periodic solution of the fol-
lowing two-species competition system with general periodic
neutral delay:

yi(t) = gl(t) [r1(t) — al(t)yl(t)m
- ; by (t — 7i(t)) — ; 1 (t)ya(t — p;(t))

—e1(t)yi(t —d1(2))]
(t) [r2(t) — az(t)y2(t)

Ya(t)

theorem, Composite coincidence degree.

-

= Y2
- Zl boj (B)y2(t — 1 () = 32 cai(t)yr (t — o4 (t))
i=
.I. |NTRODUCTI9N . . ~ea(yb(t — 5a(1))].
IME delay arises naturally in connection with sys- 2)
tem process and information flow for different part ofyhere ¢, (t) € C'(R,[0,+00)), 6k(t) € C2(R,[0,400))
dynamic systems. Practical systems with time delays nqw — 1,2) are w-periodic functions, other parameters are
occupy a place of central importance in all areas of sciengge w-periodic functions as in (1).
which have been received great interest and attention by‘rhe present paper is organized as follows: In the next sec-
many scholars, e.g. [1]-[3]. tion we introduce some notations and an important existence
A neutral time-delay system contains time delays boteorem developed in [9], [14]. By applying this theorem
in its state, and in its derivatives of state. Such systeghd some other techniques, we study the existence of positive
can be applied to many fields, such as population ecolog¥riodic solutions of system (2) in Section 3. In Section 4, an

[1], distributed networks containing lossless transmissiqfiustrative example is given to demonstrate the effectiveness
lines [2], heat exchangers [3], robots in contact with rigigf the main result.

environments [4], and so on. Due to its wider application,
neutral systems with constant or varying time delay have
been of considerable interest by many authors for decade
[51-[11].

The well-known periodic single-species population growt
models with periodic delay can be written agi(t) =

i=1

Il. AN EXISTENCE LEMMA AND NOTATIONS

T this section, we shall summarize a few concepts and
hesults from [9] and state an existence theorem.
For a fixedr > 0, letC := C([—7,0];R™). If z € C([o —
YO r(t) — a()y(t) — bE)y(t — 7(£))], which was first 7,0+ ;R )_, for s_,omeé >0 an_da € R, thenz, € C for
. t € [o,0 + 9] is defined byz,(0) = z(¢t+6) for 6 € [—7,0].
proposed by Freedman and Wu in [12]. Furthermore, LLlrl L ;

; . oo he supremum norm i@ is denoted by - ||, that is,||¢|| =
established two corresponding periodic Lotka-Volterra com- o)l f ¢ wh d h .
etitive systems involving multiple delays in [13]: maxge| -0 |¢(0)] for ¢ € C, where| - | denotes the norm in

P : R", and|u| = 37, |ui] for uw = (uy, -+ ,up) € R™.
Yi(t) = y1(t) [ra(t) — a1 ()i (1) Consider the following neutral functional differential equa-
- ; bii(t)yr (t — 7i(t)) —

tion:
. d
y3(t) = y2(t) [r2(t) — a2(t)y2

S llt) = bt 20)) = (b, 20), ®)

where f : R x C — R™ is completely continuous antl :
R x C — R™ is continuous. Moreover, we assume:
(H,) There existsv > 0 such that for everyt,p) € R x
where a1, as, bi;, ij, C1j, C2; € C(]R, [0,+OO)), Tiv Pj C, we haveb(t +w7§0) = b(t’<p) and f(t +w599) =
nj, oi € CYR,[0,+0c)) are w-periodic functions. Here, [t @). )
the intrinsic growth rates,,(t) € C(R,R) are w-periodic (/12) There exists a constarit < 1 such that|b(,») —
functions with [, rj,(t)dt > 0, k = 1,2. b(t, )| < kllp — 2l fort € R andp, v € C.
Lemma 1: ( [14]). Suppose that there exists a constant
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2) g(u) :== [, f(s,w)ds # 0 for u € OBy (R™), where
BM(R”) = {u e R": |ul < M}, andu denotes the
constant mapping fronf—7, 0] to R™ with the value
u e R"™;

3) degg, Bu(R")) # 0.

Then there exists at least oneperiodic solution of the

system

d
S ott) — bl 20)] = F(1, 20,

that satisfiesup,cp|z(t)| < M.

®)

The following remark is introduced by Fang (see Remark

1 in [15]).

Remark 1: ([15]). Lemma 1 still remains valid if the
assumption (H) is replaced by

(H}) there exists a constart < 1 such that|b(¢,¢) —

b(t,¥)| < klle — 9l fort e Randyp, ¢ € {p e C: o] <
M} with M as given in condition (1) of Lemma 1.

We will also need the following results.

Lemma 2: ([16]). Supposeo € C} {h + h €

CHR,R),h(t + w) = h(t)} and ¢'(t) < 1, Vt € [0,w].
Then the functiort— o(¢) has a unique inverse(t) satisfying
v € C(R,R) with v(a + w) = v(a) + w,Va € R.

Remark 2: ([16]). By using Lemma 2, we see thatgfc

= {h : h € C(R,R),h(t +w) = h(t)},0 € C. and

o(t) < 1,Vt € [0,w]. Theng(v(t + w)) = g(v(t )+w) =
g(v(t)),Vt € [0,w], wherewv(t) is the inverse function of
t — o(t), which together withv € C(R,R), implies that
g(o(t)) € €O

Lemma 2 and Remark 2 can also be found in Lemma 4 of

[17].
In the following, we denote
h=2L [ h(t)dt
|hlo = max;e(o,u) R (t)],

hm = minte [0,w] h(t) )

for a givenh € C2.

IIl. THE MAIN RESULT

Theorem 1: Assume that the following conditions are

satisfied.
1) The system of algebraic equations

(d1 + Z?zl 611‘) M1+ Z;nzl Cijlb2 =71,
D iy Coipia + (ﬁz +30 52]‘) p2 = T,

has a unique positive solutign® = (u3, u3);
2) T/(t) <1, p;.(t) <1, n;-(t) <1,

ol(t) <1, (52(15) <1, Tw>0,

@14—2? 1[312>0, d2+272152j>0,

1> 7;1221] o T2 > ghsEa 1221 IC;;,

G=1,---,m j=1,- mkl—1,2);

3) ko = ceMO < 1.
Then system (2) has at least one positiveperiodic solu-
tion. Here we have

¢ =max{|di|o + |d2]o,|c1]o + |calo},

My = max{|In p3| + |lnu1| K,wH, + Hy + H»},

K =max{K, K»}, R,=41 fo |ri(t)]de,

Ky =1In T" + 5 Tk —‘r (Rk +Fk7“k)

d; s bii(ui(s
nm@=mw»—lﬁi£~+zlrz<$a
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Tials) = X 28 Taals) = 3 20y,
d (v2(s)) baj (uz;(s))
=5 (s T Z Tl 5

Taa(s) = az(s) —
ex(t

) I'ly =T, F21 =Dy,

SHON
b1i(u1i(s)) |d} (v1(s))]
)+ Z T Curi (o) T =873 ()

boj(u db (2 (s
Il =as(s) + Z - 2]( Z;J( D) 1|75(§’Ei,(2()3)‘)7

I‘11 = ‘11(

A K
P = Z(|bu|o+ |cailo)e™*,
A = _ Crr)m(1=8,)
EAY kk)m m
Q_321(|01J‘0+\b23|0>e ? Uk = (=37 m+Idklo ’
2
P+Q+ 3 Irk\o-‘rz lak [oefr
H —_ k=1 k=1
* T 2 )
1= lenloek
L)
I, (s
I, — max{(rz;(s))o,z _ 1,2} :
Xl ey
1= s 5w oo
_ ST by
H; = max lna +Z , |In TS Sy ,
S D Y]
_ Fp— -l 2L
Xiq 014
Hy = max { |In - T2 Gt 1*1
2 2+, A+ 7L, ba

andui;, v1j, Y1, U2;, V2i, Y2 represent thenverse functions
of t —7(t) =s,t—pj(t) =s,t—01(t) = s, t —n;(t) =s,
t —o;(t) = s andt — d2(t) = s, respectively.

To prove the above theorem, we make the change of
variables

Yi (t) =" (t)v

Then the system (2) becomes

i (t) = r1(t) — ar(t)e®
_ Z bli(t)eajl(thi(t)) — Z Clj(t)ezz(tfpj(t))
i= =
fel( V(1 = & (8) 2 (t — 61 (t))er (E=01 (D)
zh(t) = ro(t) — ag(t)e®2®)

m n

— Z bgj( )e 2(t=m;(t)) _ Z CQi(t)eam(tfai(t))
j=1 i=1
—ea(t) (1 — (1)) (t — Ga(t))e™2(t=02(0),
In fact, in this case, (2) should be reduced to
zi(t) = ri(t) — ar(t)emr®
— Z bli(t)eafl(tiTi(t)) - Z Clj(t)e@(tfpj(t))
i=1 =
*Gl(t)xll (t -0 (t))exl(t*‘sl(t)),
w5(t) = ra(t) - az( Jer2(t)
- Z by (t)e2 (=i (1) — 5™ ¢y (t)ewt (t=o(t)
=1
*ez(t)xz(t — 85(t))em2(t=02(1),

Let © denote the linear space of real value continuous
w—periodic functions orR. The linear spac® is a Banach
space with the usual norfhr|lp = maxier Zle |z; (t)| for
a givenx = (r1,x2) € O.

We define the following maps:

b:R xC — R?,

b(tv 90) = (bl (tv 9027 b2 (tv 30));

R

by(t, @) = ——<2it) %21) f:R xC— R2
f(t, ) ©), f2(t, 9)),

i=1,2. (6)

@)

n

6992

T 1-384(t)

(fa(t,
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t. o) = — a1 (t)e?r _nb.tem—n ystem yields, after integrating frointo w, tha
fi(t,0) = r1(t) — a1 (t)e?r© — 37 by (t)err (7)) System (9) yields, after integrating froint that
1=1
— 3 ey (t)e2 pg(t))+(%)ew1( 51(1)) /“’ 10 4 S p (Pt (0)
J=1 0 Z 1
Falt,9) = ra(t) — az(t)e?2© — 3 by (t)ee ()
j=1
n +Zc1 t=ri®) _ gt (t)em1 (=) | g
—0; ea(t o(—
- Z; coi(t)err(=oi®) 4 (1_‘%28”)/6@( 52(t))
whereC := C([—-,0]; R?). B /0 ri(B)dt =T,
Clearly,b: RxC — R? andf : R xC — R? are complete w m
continuation functions and system (7) takes the form / ag(t)e'“(t) + Z bgj(t)e“(t_”f(t))
0
d
&[m(t) —b(t,z¢)] = f(t, 2). (8)

+ZCQ e (=) _ g (4)em2(t=02(1) | ¢
In the proof of our main result below, we will use the
following two lemmas. = ro(t)dt = Faw,

Lemma 3: If the assumptions of Theorem 1 are satisfied (10)
and if @ = {p € C: [lp|| < M}, where M > M, is such wheredy,(t) = <% k = 1,2. Sincer/(t) < 1, the inverse

N

=5, (%)
thatk = ce < 1, then[b(t, ) — b(t, )| < kllp = Il for  functiont = uy;(s) of t — 7:(t) = s, ¢ € [0,w)], exists. Then
teRandyp,y € Q. we have
Proof. Fort € R and g, ¢ € €2, we get
/w bll(t)ezl(t_ﬂ(t))dt _ /wﬂ(w) b1i(u1i(s)) 019 g
[bi(t, ) = bi(t, )| < di(t)[e# (0] — evs(= )] o ) 1= Ti(u(s))
< dj(t)eli#i (0 () +1=00)wi (=6: (1)) (11)

According toRemark 2, we have

Jpi(=0i(t)) — ¥i(=0:(1))], . )
/ bu(t)ezl(t_”(t))dt:/ 71)”(”“(8)) e”1(9)ds.

for somed; € (0,1), i = 1,2. Then we have 0 o 1—7/(u1(s)) 12
1bi(t, @) — bi(t, )] < |diloe™ [l — %, (i = 1,2). Similarly,
wc Ner2(t—pi (D) g — /w c1(v14(s)) 2(5) g,
Hence, / ult)e — pj(v15(s))
w w /
b, 0) — b(t, )] < (o + dzlo)e™ |0 — ] / ) (£)e™ (=5 () gf — / ‘”((2)) w19 gs,
0 0 S

)
< ceM|p — = k|l — 9| w «
s celle el = e =l /sz o2 (t=n; (1) gy — /Mgg ()gs,
0 0

Thus, the proof is complete. O 1= (uz;(s))

Lemma 4: Assume that the assumption of theorem 1 arg /w 1 (t—0i(t) ¢ = /‘u ci(v2i(s)) e”1(5) g,
satisfied. Then every solutionc © of the system 0 o 1—0oi(v2i(s))
. / dl (£)e=2(t=52(0) g :/ dz(’72( ) e2(5) s,
o) = 2b(t,2)] = Af(tar). A€ (01) 0 0 1= 0(02(s) (13)
tsfies x|y < M where vy, 71, ugj, v2;, 2 are thecorresponding inverse
saushies|jzjjo < Mo- functions.
. Proof. Let %[m(t)—)\b(t,zt)] = Af(t,z;) for z € O, that So from (10), (12) and (13), we can get
is, o
X{(t) = A [ri(t) — ar(t)em® /0 > Tie(s)e™ds = riw, i=1,2 (14)
n m k=1
by xl(t—n(t)) _ cr . (1) eT2(t=p;i(t)
; i ]gl 151 From (9) we have
e1 (1) )'exl(tﬂsl(t)) w ,
+ (1 G y (9) / [ ( )+>\d ( ) zl(t—51(t))} ‘dt
X5(t) = X [r2(t) — ax(t)e™ t)
— Z bgj(t)e“(t‘m(t)) — 3 ca(t)err(t=ai(®) - )\/ r(t) —ay(t xl(t)
=1 i=1
. ex(t) ) (t—52(t)) i
+ (sl 0] —Zbl Jert (77 = 3 et )
j=1
where Xi(t) = i(t) + A () (1= 1,2). o (H)em =00 dt
ISBN: 978-988-19251-3-8 WCE 2012
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< )\/ ry(£)|dt + )\/ [al(t)exl(t) By the mean value theorem, we see that there exist points
0 & such that
Z by (t)e™ (i) 201 —r3 () 1> 91" 8 4 9dy (& )e (706D, (21)

which implies that

+|d (#) [er =01 O) | gy, (15) 7 -
' ] n(§) <t di(@)en@ e < L (22)
In view of (10)-(14) and by a similar analysis, we have 1 1
" By (17) and (22), we can see
/ l o +Zbu e 21 () + Ady (1) ()
0
< @1 (&) + Ada (&)™ 0 E)
+chj(t)e”"‘“"’f“” + [dy () |e™ 0O at + / [xl(t) + /\dl(t)ewl(t_él(t))}l‘ at
j 0
w 2 <1Hﬁ+ﬁ+(él +F1f1)w I:Kl.
= / D Tii(s)e™Pds 1 0y
0 k=1 Similarly
w 2 1 _ _ B
B / Z Lix(s) Ty (s)e™®)ds 2o (t) + Ada(t)e™ (020 < In 22y (R 4+ Tara)w
0 rp—1 Flk(s) 192 192
Y o F%k(s) (s) T
S F S ex’“ s dS F )m(l 6/)m
/0 ; (Flk(3)>o () whered = T
w 2 ()i (t=0i (1) = i
< 1ﬂl/ ZFlk(s)e“(S)ds, (16) As M\d;(t)e >0, i=1,2, we can find that
0 k=1 xi(t) < Kj, 1=1,2. (23)
It follows from (14)-(16) that Besides, from (9) we get
w !/
z1 (t—01(2)) R =
/0 [Jcl(t) + /\dl(t)e 1 1 ] dt < (Rl + Flrl)(,:in a:’l(t) -\ {7“1 (t) _ al wl(t) Zbl a:1(t—m-,(t))

Similarly

N ' =3 ey (t)etetri®)
/ [m(t) + )\dg(t)e-Tz(t—ég(t))} dt < (Rg + Dafa)w, =
0 (18) —e1 ()} (t — 51(t))ezl<t—61(t))}

From(14), we have

“ ah(t) = X |ra(t) — ag(t)e®® =" by(t)em2 (=1 (1)
Tw = / [Fu(t)e“(t) + Flg(t)e”(t)} dt 2 [ Z
0

n
= / [ﬁle“(t) + ﬁldl(t)eml(t“sl(t”] dt =) eait)err )
0 =1
+/ {Fu(t)exl(t) + Dyp(t)e™>® —ea(t)zh(1 — 52(t))e$2(t_62(t))} :
0
_9yem(®) ﬁldl(t)e”“(t“sl(t))} . (19) Then by (23) we have
Similarly to (10)-(14) we can get FAGIESY [rl( ) +a(t +Z by, (£)e® (=71
“ 1 (t) z2(t) 1 (t) m
/0 |:F11(t)e + F12(t)e 1916 n Z - —p; (1))
—191d1(t)ez1(t*51(t))} dt
w h(n®) \ .o +e1<t>|x1<t - 51<t>>|e“<t*51<t>>} ,
:/ T(t) =9 — 0t | ™ @ .
0 1—01(n() < |r| +|a‘eK1+Z|b.‘ oK1
+Tip(t)e™ 0] dt. = Mo Io® 2 o
m
As 9 = % it follows + Z |01j\0€K2 —+ |€1\0\$/1\06K1
di(1(1) ) m
gt —v, —Hh————=2>0.
11( ) ! 11—(5/(71“)) ‘1’/2(15)| S |T’2‘0+|(12‘0€K2 +Z|b2j|oeK2
So wefind from (19) that j=1
rw > / 91" 1) 4 9y dy (t)e™ =0 (g, (20) + > leailoe™ + leafofaoe™>.
0 i=1
ISBN: 978-988-19251-3-8 WCE 2012
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Furthermore, wéhave It follows from (25), (26) and (27) that
2o < |z ()0 + |ah (¢ _ m _ =\ . o
| ||0_|21( )Mo + 1| 22( o § F=e 1("1)(a1+2b1i)+e 2(n2)2clj’
<3 Iralo + 3 larloe™ + 3 (brilo + leailo)e™ W "
k=1 k=1 i=12 7y = e™1 () Z Gai + ") (@ + Z ba;). (28)
Ui i—1 j=1
+ cijlo + [bajlo)e™® + exlollz’[loe™*.
g;uhm [b2310) Z;mmuuo From (28), we have
. T
By the assumption (3) of Theorem 1, we see x <lhh—F5—,
y ption (3) 1(m) S
- K : K - M 2a(n2) < 1117772 (29)
];ka\oe P < ];|€k|oe < ;|€k|oe 0 < 1. 2{M12) = Go+ 5 by

Then

Now, recalling (14) we can see that

2w
Fiw = Z/ Fik(s)em"(s)ds,i =1,2,
k=170

On theother hand, from (28) and (29) we get
2'[lo < H., (24) ro=e" (@ + ZBM) + 72(12) Zelj

_ . T2 Zm:1 C1j
e M) (@ + ) "byy) + — L ——
; az + 3250, b2

Ty = 65171(771) Z Coi + e$2(772)((—12 + Z 523')

IA

and by using the extended integral mean value theorem, we

can find pointsy, € [0,w] (k = 1,2) such that <. n iy Cai + e™2(m2) (g, + Zb2
w a1+ Zz 1 blz j=1 j
Tiw = Z/O Din(s)e™ ) ds Therefore, by the assumption (2) of Theorem 1 we obtain
; ¥ - EPIHRECY)
I S
- ex’“("’“)/ Ti(s)ds,  i=1,2. (25) 21(m) > In ——2F oz be
> ; ) tlm) 20— Sy b

Sincet = wuy,(s) is the inverse function of — 7;(t) =
t € [0,w], and in view of the Lemma 2, we can seg (w)
uli(O) + w, SO

s a1+ 7 bii
' za(n2) > In ———F=—. (30)
= m) az + 350, baj

(29) and(30) imply

/” bui(uii(s)) o _ /““(“’) bu(H)(1 — 7 (1)) ,, i (n:)| < Hy, i=1,2 (31)
0 u

1 —7/(u1i(s))

Similarly,

1:(0) 1—7{(t)

u11(0)+w _
:ZQm bra(f)dt = b IMSMNM+/IM&SE+/IM&J=LZ
0 0

Hence,

From (24) and (31), we have

w / 1(w) g Y 2 w 2
/0 4 (7(1( 22))ds /j Mdt:o, |x||0§;Hi+/0 2 llodt < > H; + How < My. (32)

/ I'ia(s

1(0) 1—01(¢)

zm: Cl] 017 (s)) ds _ ch Obviously, M, is independent of\, the proof is complete.
1-— Ul] (S et O
Based on the above results, we can now apply Lemma 1

=1
w

R

Thus and Remark 1 to (7) and obtain a proof of Theorem 1.
w no Proof of Theorem 1.Obviously, for M as give in Lemma
/ I1(s)ds = (a1 + Z b1i)w, 3, condition (1) in Lemma 1 is satisfied. Let(u) =
0 i=1 (91 (1), 92(10))-
w U Since
/ Flg(S)dS = Z C1jw. (26) - ., . -
0 =1 _
! g1 (,u) =w |T1 — (Ell + Z bli)e'ul + Z Elje"2 ,
Similarly i —
w n I n m 1
/ Ioi(s)ds = Z CoiWw, go(p) =w |7y — Z Coie!t + (ag + Z baj et
0 =1 i=1 j=1
w m - -
/ Tys(s)ds = (as + ZBQJ)‘*" (27) andM > |Inpi| + |Inps|, we haveg(u) # 0 for any €
0 = OBy (R?). That is, condition (2) in Lemma 1 holds.
ISBN: 978-988-19251-3-8 WCE 2012
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0272 |

0.0002 + 0.00005sint, es(t) = 0.0002 + 0.00005 cos t,
m=mn =2, 1(t) = 0.08, m(t) = 0.05, pi(t) = 0.13,

pg(t) = 009, 51(t) = 62(t) = 005, 7]1(t) = 001,

na(t) = 0.05, o1(t) = 0.07, o2(t) = 0.06. Whent < 0,

we takey; (t) = 0.255+0.01sint, ya(t) = 0.2640.01 cos t.

It can be easily check that all conditions of Theorem 1 are
: satisfied. Then system (2) under the above conditions has at
0265 ‘ ‘ ‘ s least one positivev—periodic solution (see Fig.1-Fig.3).
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V. CONCLUSION

Fig. 1. Phase portrait of a solution of system (2) with-periodic solution In this paper, a two-species competition system with

as fts fimit eyce. general periodic neutral delay has been investigated. With the
wal ‘ ¥ M\ M\MM{\ ﬂ ‘ help of the continuation theorem for composite coincidence

MWM(WW | m\ ‘(Ww / degree and some techniques, a set of sufficient conditions

. [\ M‘\/‘ | U WUW M\J\JU‘JW AARRE have been derived for the existence of at least one strictly
o2e0f | ‘U\j ] positive periodic solution. Simulation examples have shown
the effectiveness of the conditions presented in this paper.
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