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ABSTRACT. This work proposes a new method for 

unsupervised texture image classification, which is based on 

both Kohonen maps and mathematical morphology. Various 

features obtained from the fractal dimension computed using 

differential box counting method, are extracted from the 

texture images and then applied and projected into a Kohonen 

map. This map is represented by the underlying probability 

density function (pdf) estimated, by a non-parametric technique 

in the n-dimensional space, from the weight vectors resulting of 

the learning process. Under the assumption that each modal 

region of the underlying pdf corresponds to a one homogenous 

region in the texture image, the second step of the process 

understanding consists to an extraction, in the Kohonen map, of 

the modal regions of the pdf as connected components without 

using any thresholding procedure. That is done by making 

concepts of morphological watershed transformations suitable 

for modal domains detection. The observations falling in the so 

localised homogenous region in the image are considered as 

prototypes and are then used in the clustering procedure by 

means of an assignment rule. 

 
Index Terms—Texture Image, Classification, Kohonen 

Network, Watershed Transformation, Fractal dimension, 

Fractal features. 

 

I. INTRODUCTION 

 

HE quality of interpretation of a texture image depends 

heavily on the segmentation. Among segmentation 

method, some are searching the related homogeneous 

regions in the image. This low level treatment is used for the 

identification of classes present in the image, and therefore 

the classification by assigning each pixel of the image to one 

of the classes identified. 

Several algorithms have been proposed [1, 2, 3, 4, 5]. Some 

 

 
Manuscript received March 18, 2012; revised April 3, 2012. 

M. Talibi Alaoui is with the LARI Laboratory, Department of Mathematics 

and Computer Science, FSO, BP. 717, 60050, Oujda, Morocco 

(corresponding author to provide phone : 212-0536-500601; fax: 212-0536-

500603; e-mail: m.talibialaoui@fso.ump.ma). 

A. Sbihi is with the LIRF Laboratory, Department of physics, FSK, 

University of Ibn Tofail, BP. 133, 14000, Kénitra, Morocco (e-mail : 

sbihi@ensat.ac.ma). 

 

 
 

 

 

 

require a thresholding of the histogram or adjustment of 

parameters, others are limited to cases where the different 

classes correspond to separable clouds in the measurement 

space, while others do not take into account the geometric 

relationships in the image. 

In this paper, we propose a new approach for unsupervised 

classification of texture images based on morphological and 

connectionist concepts. We first calculate local fractal 

features from the whole image, then place the feature vector  

of each pixel into the feature space which form a cloud of 

observations. To help discover the different classes present in 

this cloud of N-dimensional observations, we propose as first 

treatment phase, the projection of these observations on a 

two-dimensional Kohonen map [6, 7]. The information in 

each cell of this map is represented by the probability density 

function value (pdf) estimated by a nonparametric procedure 

[8], from the distribution in multidimensional space of weight 

vectors resulting from the learning of the neural network. 

Under the assumption that each regional maximum of the pdf 

[9, 10] is a modal area of this function, which corresponds to 

a homogenous region in the image, the second step of 

treatment consists in extracting automatically regions of the 

fdp modal regions into connected and individualized 

components. This extraction is based on the exploitation of 

the watershed technical, generally used for segmentation of 

digital images using mathematical morphology [11, 12, 13]. 

Finally, the classification phase is to take the weight vectors 

corresponding to the modal regions detected as prototypes 

of homogeneous regions in the image. Weights from each of 

these prototypes are the basis of the assignment of any pixel 

of the image to one of the classes extracted. 

II. REPRESENTATION OF THE IMAGE TEXTURE INFORMATION 

ON THE KOHONEN MAP 

Every classification process begins with an acquisition step 

of observations which consists in determining relevant 

attributes that characterize better the objects. The sample of 

observations is constituted by fractal features of a texture 

image. 

A. Self-Organising feature Map ( SOM ) and learning 

process 

Let’s  QXXXX ...,,,, 321  be a sample of 

Q observations in a N-dimensional space such as 

Mohammed Talibi-Alaoui and Abderrahmane Sbihi
 

 

Fractal Features Classification for Texture 

Image Using Neural Network and 

Mathematical Morphology 

T 

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

T

Nqnqqqq xxxxX ],..,..,,,[ ,,2,1, , Qq ..,,2,1 . 

The Kohonen network is made of a two layers. The first one, 

the input layer is composed of N neural units representing 

the N  attributes of the observation qX . The output layer, 

or competitive layer, is composed of M  neural units 

regularly distributed on the map which elaborates prototypes 

of the data (cf. Figure 1). The neural units of the first layer 

are connected to the units of the second layer. Each 

interconnection from an input unit j  to an output unit m  

has a weight jmW , . That means that each output unit m  has 

a corresponding weight vector 

 Tnmmmm WWWW Nm,,2,1,  W,..,,..,, (cf. figure 1).  

 

Each neural unit in the output layer is assigned with a 

specific position and a weight vector. When an input )(tX q  

is presented to the network, the neural unit whose weight 

vector is the closest to this observation wins the competition 

and is allowed to learn it even better. The neural units of the 

second layer are so interconnected to elaborate the winning 

neural units by inhibiting the other units. The output of the 

winner is then equal to 1 while the outputs of all the other 

output units are set to 0, such as : 
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Where ))( W),(( m' ttXd q  is the Euclidean distance between 

the observation )(tX q  and the weight vector )(' tWm  of the 

unit 'm  in the output layer. 

The winning neural unit and its neighbours are updated. The 

size of the neighbourhood is decreased as the training goes 

on. The weight vector of this winning unit, noted *m , and 

its neighbours m  are modified according to equations : 
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 where : 

 

 *m  is the winning unit defined by : 

 

                               ))]( , )(([  min    *
m

tWtXdArgm mq                 (3) 

 )(tr is the interaction radius which depends on the 

number t of the iteration. 

 )(ta  is the learning coefficient at the time t . This 

coefficient can be an hyperbolic, exponential or 

linear function of t . 

 ),( rmV  is the neighbourhood of a neural unit m  

with a radius r , defined by : 

 

 r ),(d / m  m'  M[,[0,  m' ),( '  mm UUrmV   (4) 

 

 ) ,( 'mm UUd denotes the Euclidean distance 

between the position vectors mU  and 'mU  of the 

m  and 'm  neural units. 

 )*,( tmh  is the interaction function that depends on 

the proximity radius )(tr defined by : 

                                         )
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B. Application to texture image classification 

 

In this application, we used a texture image (cf. figure 9). 

 
Fig. 1. Kohonen Network 

 

a. Fractal dimension 

 

The concept of fractal is used in a large number of 

applications including image analysis, classification pattern 

recognition, segmentation etc [14]. Fractal objects have 

irregular shapes and complex structures that cannot be 

represented adequately by the traditional Euclidean 

dimension. The concept of fractal dimension (FD) is used as 

an indicator of surface roughness [15]. 

Of the wide variety of methods for estimating the fractal 

dimension that have so far been proposed, the box-counting 

method [14], as it can be computed automatically and can be 

applied to patterns with or without self-similarity[16]. 

The box counting method consists in partitioning the 

image space into square boxes of equal size. The box covers 

the image space of the function or pattern of interest and the 

number of boxes that contain at least one pixel of the 

function is counted. The process is repeated with different 

box sizes. The fractal dimension is obtained from the slope of 

the best fitting straight line to the graph plotting the log of 

the number of boxes counted versus the log of the 

magnification index for every stage of partitioning as shown 

in figure 2. For example, an image measuring size 

MM  pixels is scaled down to ss , where 2/1 Ms  , 

and s is an integer. Then, Msr / . 

Fractal dimension D is given by, 
)/1log(

)log(

r

N
D r             (6) 

In this paper the differential box counting method is used to 

calculate the FD and then different fractal features are 

derived from this fractal dimension. 

 

b. Differential Box Counting Method 
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N. Sarkar and Chaudhuri had proposed the differential box 

counting (DBC) method and have compared it with other 

conventional four methods in [17]. 

Consider an image of size MM   pixels. Let it be scaled 

down to a size ss  where 12/  sM , where s  is an 

integer. Then, Msr / . Now consider the image to be in a 

3D space with (x, y) denoting the spatial co-ordinates, while 

the z  axis denotes the gray level. The (x, y) space is 

partitioned into grids of size s x s. On each grid there is a 

column of boxes of size 'sss  . Figure 2 shows the 

schematic for computing FD using differential box counting 

method. 

If the total number of gray level is G , then    sMsG /'/  . 

Numbers from 1, 2, …are assigned to the boxes starting 

from the lowest gray level value. Let the minimum and the 

maximum gray level of the image in the thji ),(  grid fall in 

box number k  and l  , respectively. The contribution of Nr  

in thji ),(  grid is given by: 

 

                                1),(  kljinr                             (7) 

Due to the differential nature in computing rn  this method is 

called differential box counting method. The contributions 

from all grids are found by : 

 

                                     
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,

),(                         (8) 

 
 

 

 

rN  is computed for different values of s  i.e. different values 

of r . Using equation (6) D, the fractal dimension can be 

estimated, from the least square linear fit of )log( rN  along 

)/1log( r . The slope of the best fitting curve will give the 

fractal dimension. Figure 2 shows the plot of )log( rN  

versus )/1log( r  from which the FD is computed. A random 

placement of boxes is applied in order to reduce quantization 

effects. 

 

c. Fractal features 

 

In this paper the differential box counting method is used to 

calculate the FD and then different fractal features are 

derived from this fractal dimension which constituted the 

sample of observations used in the proposed approach. 

 

Five features derived from [15, 18] based on fractal 

dimension are the FD of original image ( 1f ), high gray 

valued image ( 2f ), low gray valued image ( 3f ), 

horizontally smoothed image ( 4f ) and vertically smoothed 

image ( 5f ). 

 

d. Learning phase 

 

We try here to model the learning coefficient (cf. figure 3) by  

an exponential function which decreases towards zero when  

t  increases such as : 

                                                31
2 )(  


 t
eta                       (9)             

 

Let itermax denotes the fixed number of iterations for the 

learning phase. By choosing the values 0.8 and 0.05 

respectively as the maximum and the minimum values of 

)(ta  and that this coefficient reaches the values 0.1 in 

(2/3*itermax), this learning coefficient is given by : 

 

                      0.05  t*)(10*(8.12)- exp * 0.75    )( -5 ta         (10) 

 

 
 

 

 

The proximity radius )(tr  introduced in the interaction  

function )*,( tmh depends on the tht  iteration such as : 
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This proximity radius decreases every Qnr  iterations, where 

rn  is the epoque number with a constant radius and Q  is the 

number of the observations in the sample. Note that one 

epoque corresponds to one scan of the total data involved in 

the learning process of the network. )mod(yx denote the 

remainder after division of x by y . 

 

In the learning phase, the observations are presented 

sequentially one by one to the network randomly and without 

putting back to be sure that in each epoch, all the 

observations were “learned” by the network. 

 

e. Visualisation of the pdf on the Kohonen Map 

 

This first step of the process concerns the self-organising and 

the learning of the network which permit to represent the 

Kohonen map. Once the learning phase is processed, the 

Fig. 3. Learning coefficient 

 

Fig. 2. Plot of )log( rN  versus )/1log( r  
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determined weight vectors in the multidimensional data space 

are used to estimate the underlying probability density 

function (pdf). For this purpose, we use the non-parametric 

Parzen estimate defined by [8][9] : 
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The parameter 0h  has a great effect on the quality of the 

estimation. If it is large, the little maxima of the pdf are 

indeterminable. Inversely, if 0h  is too small, we obtain an 

estimation with  many non significant maxima. 

The visualisation of the pdf permits to display the Kohonen 

map as a digital image where each unit of the map is 

represented by a gray value pixel which corresponds to the 

pdf value. These pixel intensities permit to visualize the 

clusters frontiers. The visualisation of the pdf estimated with 

02.0h0   is displayed in figure 4 and figure 5. We can 

observe that the map is constitued by four regions where the 

pdf presents high values, separated by valleys where the pdf 

presents low values. We consider that a region is a set of 

connected pixels in the map with relatively higher values of 

the pdf. 

 

 
 

 

This data projection method provides a planar display of the 

high dimensional data set. So, it can be assumed that clusters 

on the Kohonen map are images of clusters in the raw 

multidimensional data space, and we can usually analyse 

graphic displays without conscious use of any analytical 

model of clusters, or any mathematical decision rule. 

However this technique, used alone, doesn’t allow an 

automatic data classification. To automate this process, and 

to give a powerful tool to detect, to extract and to give a 

number of the clusters from the Kohonen map, we propose 

to apply the watershed morphological transformation. The 

following step concerns the problem of modal regions 

detection in the Kohonen map. 

III. MODAL REGIONS EXTRACTION WITH WATERSHED 

TECHNICAL 

This principal phase of the procedure consist in the 

localisation of the modal regions of the underlying pdf by 

means of the watershed algorithm based on homotopic 

thinnings of the function [13]. 

Prior to mode detection, some kind of pre-processing is 

needed to enhance significant local variations of the density 

function. Opening operation, tends to smooth the function by 

filling up small holes and removing insignificant peaks in the 

function, while preserving the global shape of the function 

(cf. Figure 6) [13]. 

 As we use the watershed approach, which is well suited for 

determining the catchment basins corresponding to the 

regional minima of a function [19], we introduce the additive 

inverse )( mWf  of the function )( mWp . Thanks to this 

simple transformation, The maxima of )( mWp  become 

minima of )( mWf . 

The watershed of a function can be constructed through 

consecutive homotopic thinnings of this function. The 

homotopic thinning is a transformation commonly used in 

mathematical morphology for image skeletonization (Figure 

7) [14]. In the watersheds resulting graph, modal regions of 

the pdf that are homotopic and geodesic extensions of 

regional maxima are separated by lines and are easily 

extracted in connected components through a simple 

morphological transformation. 

Figure 8 shows the graph of the function resulting from this 

technical [20]. The same result is schematically represented 

by a binary representation of the Kohonen map, where modal 

regions of the pdf are well represented by an individualized 

connected components. 

 

 

 
 

 

 

 
 

 

Fig. 4. Kohonen Map Fig. 5. pdf graph 

Fig. 6. Opening smoothing 

Fig. 7. pdf modal regions 
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IV. CLASSIFICATION RESULTS 

Under the assumption that the detected modal regions 

correspond to homogenous regions in the image and a one 

class can be represented on the Kohonen map by one or 

more homogeneous regions in the image, the points 

constitute modal regions are considered as prototypes of 

classes present in the image (cf. Figure 9) and are the basis of 

the assignment of any pixel of the image to one of the 

classes, through the Euclidean distance on the map (cf. 

Figure 10). 

 

       

      

V. CONCLUSION 

In this work, we proposed an approach to unsupervised 

classification of textured image, based on the combination of 

an algorithm of Mathematical morphology in a Kohonen 

map. In this approach, we represent at first the Kohonen map 

by the pdf underlying the sample of observations.  

Modal regions of the pdf are then extracted into connected 

components by the watershed method which corresponds to 

a homogeneous region in the image. Finally, in classification 

phase, the weights vectors corresponding to the extracted 

modal region are taken as prototypes of classes present in the 

image, and are used for the assignment of each pixel in the 

image to one of the classes identified. This approach shows 

that in an unsupervised context, the tools of mathematical 

morphology associated with the Kohonen map allows a good 

automatic classification of the textured image without using 

any thresholding procedure. As perspective, we search to 

apply our approach on 3D image. 
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Fig. 8. Classes identified on the Kohonen map 

Fig.9. Original image 

 
Fig. 10. Classified Image 
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