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Abstract—Let data of a univariate process be given. If the
data are related by a sigmoid curve, but the sigmoid property
has been lost due to the errors of the measuring process, then
the least sum of squares change to the data that provides
nonnegative third divided differences may be required. It
is a structured quadratic programming calculation, which is
solved very efficiently by a special least squares algorithm that
takes into account the form of the constraints. The algorithm
is outlined and two examples on real economic data are
considered. The first is an application to the U.S.A. renewable
energy consumption data during the period 1980-2010, which
exhibit a sigmoid pattern. The second is an application to
technological substitutions among the PDP computers to the
VAX computers between the years 1984 and 1991. The results
are briefly analyzed and the modeling capability of the method
is demonstrated.

Index Terms—3-convex sigmoid, divided difference, renew-
able energy consumption, least squares data fitting, technolog-
ical substitution

I. INTRODUCTION

A pplications of sigmoid curves are common in science,
technology, economics and medicine [1, 7, 14, 17, 25].

For, example, a biological growth follows a sigmoid curve
or logistic curve, which best models growth and decline over
time [16]. Since the adoption of technology and technology-
based products is similar to biological growth, many growth
curve models have been developed to forecast the penetration
of these products with the logistic curve and the Gompertz
curve the most frequently referenced [20, 21]. Other ex-
amples with the sigmoid assumption come from economic
substitution [22], from production and distribution cost data
for analysis of operations of a firm [9], from decision making
[13] and from image processing [11], for instance.

We consider the general problem where measurements
from a sigmoid process are to provide estimation to an
underlying sigmoid function f(x), but the measurements
include random errors. If it is known that the data can
be modeled by growth curves or sigmoid curves or that
they allow a certain sigmoid form that depends on a few
parameters rather than having to estimate unknown function
values, then the analysis is usually simplified by existing
parametric methods [6, 15, 27]. In this paper we outline
an algorithm for estimating points on a sigmoid curve of
unspecified parametric form, when the process is subject
to increasing marginal returns or subject to diminishing
marginal returns. The algorithm may be applied to a variety
of situations, where the analyst takes the view that the
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“sigmoid” property of the (unknown) underlying function has
been lost due to errors in the data.

Let {φi : i = 1, 2, . . . , n} be a sequence of measurements
(data) of smooth function values {f(xi) : i = 1, 2, . . . , n},
where the abscissae {xi : i = 1, 2, ..., n} are in strictly
ascending order, and let φ[xi−1, xi, xi+1, xi+2] designate
the third divided difference relative to the four abscissae
xi−1, xi, xi+1 and xi+2:

φ[xi−1, xi, xi+1, xi+2] =

φi−1

(xi−1 − xi)(xi−1 − xi+1)(xi−1 − xi+2)

+
φi

(xi − xi−1)(xi − xi+1)(xi − xi+2)

+
φi+1

(xi+1 − xi−1)(xi+1 − xi)(xi+1 − xi+2)

+
φi+2

(xi+2 − xi−1)(xi+2 − xi)(xi+2 − xi+1)
,

i = 2, 3, ..., n− 2. (1)

The sequence of the third differences {φ[xi−1, xi, xi+1,
xi+2], i = 2, 3, . . . , n − 2} is an appropriate description
of the third derivative of f(x) and if the data are error
free, then the number of sign changes in (1) is no greater
than the number of sign changes in the third derivative
of f(x). However, due to errors of measurement it is
possible that the sequence {φ[xi−1, xi, xi+1, xi+2], i =
2, 3, . . . , n − 2} contains far more sign changes than the
sequence {f [xi−1, xi, xi+1, xi+2], i = 2, 3, . . . , n− 2}.

We assume that no sign changes occur in the third deriva-
tive of the underlying function. Thus, if the third divided
differences of the data show sign irregularities, we take the
view of [5] that some smoothing should be possible in order
to recover the missing property. Specifically, we address
the problem of making least changes to the data subject
to nonnegative third divided differences. We define “least
change” with respect to the L2 norm, which means that we
seek a vector y that minimizes the sum of the squares

Φ(y) =
n∑

i=1

(yi − φi)2 (2)

subject to the constraints

y[xi−1, xi, xi+1, xi+2] ≥ 0, i = 2, 3, . . . , n− 2, (3)

where we regard the data {φi : i = 1, 2, . . . , n} and the best
fit {yi : i = 1, 2, . . . , n} as components of the n−vectors
φ and y, respectively. Notice that in the title of the paper
we use the term “discrete 3-convex fit” for the best fit,
because of its association with the third divided differences
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(cf. [12]:p.23, [26]). In order to simplify our notation, we
denote the constraint normals with respect to y by {ai : i =
2, 3, . . . , n − 2} and we set y[xi−1, xi, xi+1, xi+2] = yTai,
for i = 2, 3, . . . , n − 2. It is important to note that the
constraints on y are linear and have linearly independent
normals. Also, the second derivative matrix with respect to
y of the objective function (2) is twice the unit matrix.
Thus, the problem of minimizing (2) subject to (3) is a
strictly convex quadratic programming problem that has
a unique solution. There exist several general algorithms
(see, for example, [8], [19]) and two special algorithms [2],
[4] that may be applied to this problem after appropriate
modifications.

Since the ith third divided difference can be expressed as
the difference of two consecutive second divided differences
divided by the difference between those arguments which are
not in common (see, for example, [23])

y[xi−1, xi, xi+1, xi+2] =

1
(xi+2 − xi+1)

(y[xi, xi+1, xi+2]− y[xi−1, xi, xi+1]) (4)

the constraints (3) imply the inequalities

y[xi, xi+1, xi+2] ≥ y[xi−1, xi, xi+1], i = 2, 3, . . . , n− 2.
(5)

The essential concept in restrictions (5) is process subject to
non-decreasing marginal returns, marginal return being the
term used for the change in return due to an increase in x.
Criterion (3) or the equivalent criterion (5) provides a prop-
erty that allows a sigmoid shape for the underlying function,
as we explain next. Indeed, without loss of generality we
assume that there is an index k inside the interval [2, n− 2]
such that {y[xi, xi+1, xi+2] ≤ 0, i = 1, 2, . . . , k − 2} and
{y[xi, xi+1, xi+2] ≥ 0, i = k − 1, k, . . . , n − 2}. It follows
that there is a concave region of the fit on [x1, xk] and a
convex region on [xk−1, xn]. In the concave region, the fit
exhibits non-increasing returns

y[xi, xi+1] ≥ y[xi+1, xi+2], i = 1, 2, . . . , k − 2

and in the convex region exhibits non-decreasing returns

y[xi, xi+1] ≤ y[xi+1, xi+2], i = k − 1, k, . . . , n− 2,

where y[xi, xi+1] = (yi+1−yi)/(xi+1−xi) is the fist divided
difference relative to xi and xi+1. It follows that our assump-
tion on non-decreasing second divided differences seems
suitable for applications to sigmoid data fitting. Further, it
is interesting to note that if we replace the third differences
(3) by the analogous second or first differences, we obtain
the best convex fit [5], or the best monotonic fit [24] to the
data, the latter problem especially having found numerous
applications in various subjects during the last 60 years.

The paper is organized as follows. In Section II we out-
line a quadratic programming method for this optimization
calculation. In Section III we consider two examples on
real economic data and reveal important properties of the
process. The first is an application to the U.S.A. renewable
energy consumption data during the period 1980-2010. The
second is an application to technological substitutions among
the PDP computers to the VAX computers between the
years 1984 and 1991. The results are briefly analyzed and

the modeling capability of the method is demonstrated. In
Section IV we present some concluding remarks and discuss
on the possibility of future directions of this research.

The method may also be applied to the problem where
inequalities (3) are replaced by the reversed ones, in which
case we obtain a convex / concave fit. The latter problem
may be treated computationally as the former one after an
overall change of sign of φ.

II. AN OUTLINE OF THE METHOD OF CALCULATION

It is straightforward to calculate the solution of the
problem of Section I by standard quadratic programming
methods. However, because each of the constraint functions
y[xi−1, xi, xi+1, xi+2], for i = 2, 3, . . . , n − 2, depends on
only four adjacent components of y and because of the
tractability of the least squares objective function, we have
developed a special version of the quadratic programming
algorithm of [4] that is faster than general algorithms.

Our algorithm generates a finite sequence of subsets {Ak :
k = 1, 2, . . .} of the constraint indices {2, 3, . . . , n−2} with
the property

yTai = 0, i ∈ Ak. (6)

For each k, we denote by y(k) the vector that minimizes (2)
subject to the equations (6) and we call each constraint in
(6) an active constraint. All the active constraints constitute
the active set. Since the constraint normals are linearly
independent, unique Lagrange multipliers {λ(k)

i : i ∈ Ak}
are defined by the first order optimality condition

2(y(k) − φ) =
∑
i∈Ak

λi
(k)ai, (7)

while, by strict complementarity, λ(k)
i = 0, i /∈ Ak. The

method chooses Ak so that each λ(k)
i satisfies the conditions

λ
(k)
i ≥ 0, i /∈ Ak. (8)

If Ak is not the final set of the mentioned sequence, A∗

say, then the quadratic programming algorithm makes adjust-
ments to Ak until the solution is reached. The Karush-Kuhn-
Tucker conditions [8]:p.200 provide necessary and sufficient
conditions for optimality. They state that y is optimal if
and only if the constraints (3) are satisfied and there exist
nonnegative Lagrange multipliers λi ≥ 0, i ∈ A∗ such that
(7) holds, after we replace y(k) by y, λ(k)

i by λi and Ak by
A∗.

The calculation begins from any vector y(1) such that
λ

(1)
i ≥ 0, for i ∈ A1, where a suitable choice for A1 is

provided by [4]. If the constraints (3) hold at y = y(1),
then the calculation terminates because the Karush-Kuhn-
Tucker conditions are satisfied. We assume that at the kth
iteration, Ak, y(k) and λ(k) are available, but y(k) violates
some of the constraints (3). Then, the index of the most
violated constraint, ` say, is added to Ak and new values
of the Lagrange multipliers are calculated. Now, if there
are negative multipliers indexed in Ak, then an index, κ
say, that is always different from `, is picked from Ak, the
κth constraint is dropped from the active set and Ak is set
to Ak \ {κ}. The algorithm continues iteratively dropping
constraints from the active set until it eventually recovers the
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inequalities (8). Then a new iteration starts, while current
Ak is distinct from all its previous instances at this step
and, in exact arithmetic, the value of (2) moves strictly
upwards. Since there is only a finite number of sets Ak, the
algorithm cannot cycle indefinitely between its steps. This
approach is well suited to our problem, while a particular
advantage is that only O(n) computer operations are needed
for updating the matrices associated with the calculation of
y(k) and λ(k). Matrix updating techniques may be found in
[10]. An implementation of this method in FORTRAN is
provided by a version of [3].

III. APPLICATIONS

Substitution in economics is the process at which one
product supplants another as it enters the market [22]:p. 273.
In competitive strategy several important questions are raised
on how to best defend against a substitute, or how to promote
substitution. Although the rate of penetration of substitutes
differs from product to product, the path of substitution for
successful substitutes looks like an S-curve, where demand
is plotted against time.

In this section we present two applications of our method
to real data from economic substitutions. First, the set of
annual data of renewable energy consumption in quadrillion
Btu (a unit of energy equal to about 1055 joules) in the
U.S.A. for the period 1980-2010 (Release Date Report:
March 2010 by the Energy Information Administration [28])
is used to illustrate the modeling performance of our method
in calculating the best fit. The data are presented in the first
two columns of Table I. For purposes of analysis we are not
interested in the physical details of the process, but only in
what they imply for the shape of the relationship over time.
Since we have to estimate values for an unknown consump-
tion function, initially we make an attempt to distinguish any
trends by a primary analysis of the scaled first, second and
third differences of the data. These differences are presented
in columns 3, 4 and 5, respectively, of Table I, rounded
to four decimal places. The first differences show a slight
convex trend, but the second and third differences appear to
fluctuate irregularly around zero, as it is shown in Fig. 1.
Furthermore, as the trend indicates, the data first seem to
increase less than proportionately, then to decrease and then
to increase more than proportionately. Therefore we take the
view that the underlying consumption function follows the
shape of a concave / convex curve.

The method of Section II was applied to these data
(columns 1 and 2 in Table I). Without any preliminary
analysis the data were fed to the computer program and
within 17 active set changes the solution was reached.
The best fit is presented in the sixth column of Table I
and the corresponding Lagrange multipliers are presented
in the seventh column. Fig. 2 shows the data and the fit.
Furthermore, the scaled sequences of first, second and third
divided differences of the best fit are presented in the last
three columns of Table I. We can immediately notice the non-
decreasing property of the sequence of the second divided
differences and the correspondence between the zero La-
grange multipliers and the non-zero third divided differences.
The zero Lagrange multipliers show that all the constraints,
but those corresponding to the years 1983, 1999 and 2000,
are active. As points with zero third divided differences lie on

Fig. 1. First, second and third divided differences of the data given in
Table I (columns 3, 4 and 5 respectively). The continuous line is only for
illustration.

Fig. 2. Graphical representation of the data given in Table I. The data of
column 1 annotate the x-axis. The data of column 2 are denoted by (+) and
the best fit of column 6 by (o).

a parabola, it follows that the calculated consumption curve
consists of three overlapping parabolae. A sensitivity analysis
would conclude that the best fit is strongly dependent upon
the placement of all active constraints on [1984,1998] and on
[2001,2007], because the associated Lagrange multipliers are
away from zero. In addition, the inactive constraints allowed
for the best fit to follow the data trends.

The piecewise monotonicity of the first differences (col-
umn 8) and the sign change of the second differences (col-
umn 9) may lead one’s search for estimating the inflection
point of the consumption curve. Indeed, the first differences
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TABLE I
LEAST SQUARES FIT BY NONNEGATIVE THIRD DIVIDED DIFFERENCES TO U.S.A. RENEWABLE ENERGY CONSUMPTION DATA (IN BTU) PER YEAR

 

Data Best fit 

Year 
xi 

Consumption 
φi 

1st 
differences 

2nd 
differences 

3rd  
differences 

Best fit 
yi 

Lagrange 
multiplier 

1st   
differences 

2nd   
differences 

3rd   
differences 

1980 2.5853 0.1273 -0.0902 0.3029 2.5742 0.0667 0.1328 -0.0165 0.0000 

1981 2.7126 0.0371 0.2127 -0.3679 2.7070 0.2336 0.1163 -0.0165 0.0000 

1982 2.7496 0.2498 -0.1552 0.1305 2.8233 0.0587 0.0998 -0.0165 0.0000 

1983 2.9994 0.0945 -0.0247 -0.1162 2.9231 0.0000 0.0833 -0.0165 0.0091 

1984 3.0940 0.0699 -0.1409 0.1559 3.0064 0.5830 0.0667 -0.0075 0.0000 

1985 3.1638 -0.0711 0.0150 0.1694 3.0731 2.3521 0.0593 -0.0075 0.0000 

1986 3.0927 -0.0561 0.1844 0.0068 3.1323 5.0696 0.0518 -0.0075 0.0000 

1987 3.0367 0.1283 0.1912 -0.8971 3.1841 7.8506 0.0443 -0.0075 0.0000 

1988 3.1650 0.3196 -0.7058 1.1444 3.2284 10.3146 0.0368 -0.0075 0.0000 

1989 3.4846 -0.3863 0.4385 -0.3471 3.2653 13.7771 0.0294 -0.0075 0.0000 

1990 3.0983 0.0523 0.0914 -0.2543 3.2947 17.0604 0.0219 -0.0075 0.0000 

1991 3.1506 0.1437 -0.1628 0.2715 3.3165 19.1687 0.0144 -0.0075 0.0000 

1992 3.2943 -0.0191 0.1087 -0.1777 3.3310 19.8823 0.0069 -0.0075 0.0000 

1993 3.2752 0.0896 -0.0690 0.1596 3.3379 18.8250 -0.0005 -0.0075 0.0000 

1994 3.3648 0.0206 0.0906 -0.2650 3.3374 16.1612 -0.0080 -0.0075 0.0000 

1995 3.3853 0.1111 -0.1744 0.0498 3.3294 12.2266 -0.0155 -0.0075 0.0000 

1996 3.4965 -0.0633 -0.1246 0.3601 3.3139 8.1166 -0.0230 -0.0075 0.0000 

1997 3.4331 -0.1879 0.2355 -0.2604 3.2909 4.6843 -0.0304 -0.0075 0.0000 

1998 3.2453 0.0476 -0.0249 -0.3846 3.2605 1.8382 -0.0379 -0.0075 0.0000 

1999 3.2929 0.0227 -0.4095 0.8993 3.2226 0.0000 -0.0454 -0.0075 0.0556 

2000 3.3156 -0.3868 0.4898 -0.5334 3.1772 0.0000 -0.0528 0.0482 0.0012 

2001 2.9289 0.1030 -0.0436 0.1679 3.1244 0.6650 -0.0047 0.0494 0.0000 

2002 3.0319 0.0594 0.1243 -0.1878 3.1197 1.4678 0.0447 0.0494 0.0000 

2003 3.0913 0.1837 -0.0635 0.1176 3.1644 1.9700 0.0941 0.0494 0.0000 

2004 3.2750 0.1202 0.0541 -0.0572 3.2584 2.2709 0.1434 0.0494 0.0000 

2005 3.3953 0.1743 -0.0031 0.4806 3.4019 2.3309 0.1928 0.0494 0.0000 

2006 3.5696 0.1712 0.4774 -1.0293 3.5947 1.9994 0.2422 0.0494 0.0000 

2007 3.7408 0.6487 -0.5518 0.7116 3.8369 0.7004 0.2916 0.0494 0.0000 

2008 4.3895 0.0968 0.1598 - 4.1284 - 0.3409 0.0494 - 

2009 4.4863 0.2566 - - 4.4694 - 0.3903 - - 

2010 4.7430 - - - 4.8597 - - - - 

 

  decrease monotonically until 2001 and increase monoton-
ically subsequently, indicating a lower turning point of the
marginal consumption curve in the interval [2000,2001]. The
essential feature for the consumption curve is that its secant-
slope (cf. first differences), though decreasing until 2001
starts increasing afterwards. Moreover, it is positive up to
1992, then negative up to 2001 and positive afterwards.
A rationalization of this is the idea that after 2001, the
intensity of the use of renewable energy is increased annually,
either because of increased energy demands or because other
energy types are been replaced by renewable ones leading
to larger and larger consumption increments of renewable
energy. The size of the Lagrange multipliers shows that the
strongest resistance of the energy market to the renewable
energy entering is during [1991,1994]. Moreover, since the
first twenty second differences are negative and the last nine
are positive the best fit consists of one concave section on the
interval [1980,2001] and one convex section on the interval
[2000,2010]. Hence the inflection point of the consumption
curve lies in the interval [2000,2001]. Furthermore, the
analysis suggests that any estimation of the upper limit in the
maximum possible value of energy market penetration rate,
which is highly desirable in estimating substitution processes
[21], is rather immature at this stage of the renewable energy
consumption process.

The second application is a fit to data provided by Modis
[18]. Modis analyzes technological substitutions among com-
puter products of Digital Equipment CorporationTM in Eu-
rope and discusses on the limitations of Fisher and Pry’s
model [7] on these data. The transitions are from the PDP
computers to the VAX computers between the years 1984
and 1991, and the data have been derived on 31 trimesters.
The first column of Table II displays the trimesters and the
second column presents the percentage of substitution of
PDP by VAX products. The data were fed to our computer
program and the best fit subject to non-positive third divided
differences is presented in the sixth column of Table II. All
the other columns are explained in Table I. Especially for the
differences presented in columns 3, 4 and 5, we notice that
the first and second differences show concave trends, while
the third differences exhibit deviations along their range that
need investigation. Further, Fig. 3 displays the data and
the fit. The computer program terminated at the optimum
within 33 active set changes. Without entering a theoretical
justification of the results, we note that our method provides
an informative description of the substitution process. Indeed,
in view of the active constraints, it reveals the ranges of con-
vexity and concavity as well as the rates of marginal change,
and, where a Lagrange multiplier is large, the problem is
particularly dependent upon the associated constraint.
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TABLE II
LEAST SQUARES FIT BY NON-POSITIVE THIRD DIVIDED DIFFERENCES TO TRANSITIONS FROM THE PDP COMPUTERS TO THE VAX COMPUTERS

BETWEEN THE YEARS 1984 AND 1991

Data Best fit 

Trimester 
xi 

%Substitution 
φi 

1st 
differences 

2nd 
differences 

3rd  
differences 

Best fit 
yi 

Lagrange 
multiplier 

1st   
differences 

2nd   
differences 

3rd   
differences 

1 3.55 6.750 -9.910 13.670 12.690 54.840 -4.534 1.231 0.000 

2 10.30 -3.160 3.760 -5.200 8.156 151.652 -3.303 1.231 0.000 

3 7.14 0.600 -1.440 -1.450 4.852 276.710 -2.072 1.231 0.000 

4 7.74 -0.840 -2.890 16.830 2.780 400.252 -0.841 1.231 0.000 

5 6.90 -3.730 13.940 -33.810 1.938 492.508 0.390 1.231 0.000 

6 3.17 10.210 -19.870 31.750 2.328 548.425 1.621 1.231 0.000 

7 13.38 -9.660 11.880 -11.650 3.949 511.415 2.852 1.231 0.000 

8 3.72 2.220 0.230 1.230 6.800 399.958 4.083 1.231 0.000 

9 5.94 2.450 1.460 8.710 10.883 243.711 5.314 1.231 0.000 

10 8.39 3.910 10.170 -17.460 16.196 89.510 6.545 1.231 0.000 

11 12.30 14.080 -7.290 21.560 22.741 0.000 7.776 1.231 -1.014 

12 26.38 6.790 14.270 -23.930 30.516 0.000 9.007 0.217 -1.079 

13 33.17 21.060 -9.660 -0.280 39.523 127.627 9.224 -0.862 0.000 

14 54.23 11.400 -9.940 24.340 48.747 349.983 8.362 -0.862 0.000 

15 65.63 1.460 14.400 -33.100 57.109 615.940 7.500 -0.862 0.000 

16 67.09 15.860 -18.700 32.140 64.609 910.613 6.638 -0.862 0.000 

17 82.95 -2.840 13.440 -31.840 71.247 1163.785 5.776 -0.862 0.000 

18 80.11 10.600 -18.400 28.330 77.024 1356.937 4.914 -0.862 0.000 

19 90.71 -7.800 9.930 -5.850 81.938 1437.439 4.053 -0.862 0.000 

20 82.91 2.130 4.080 -10.510 85.991 1423.772 3.191 -0.862 0.000 

21 85.04 6.210 -6.430 3.930 89.181 1340.785 2.329 -0.862 0.000 

22 91.25 -0.220 -2.500 6.200 91.510 1190.039 1.467 -0.862 0.000 

23 91.030 -2.720 3.700 -4.340 92.977 983.214 0.605 -0.862 0.000 

24 88.310 0.980 -0.640 -2.480 93.582 751.943 -0.257 -0.862 0.000 

25 89.290 0.340 -3.120 -2.030 93.325 520.435 -1.119 -0.862 0.000 

26 89.630 -2.780 -5.150 21.250 92.206 304.149 -1.981 -0.862 0.000 

27 86.850 -7.930 16.100 -26.080 90.226 123.336 -2.843 -0.862 0.000 

28 78.920 8.170 -9.980 4.990 87.383 28.776 -3.704 -0.862 0.000 

29 87.090 -1.810 -4.990 -  83.679 -   -4.566 -0.862 - 

30 85.280 -6.800 - -  79.112 -  -5.428 - - 

31 78.480 -  - -  73.684 -  - - - 

 

  

There exist 26 active constraints, the non-active ones being
the 11th and 12th associated with zero Lagrange multipliers.
It follows that the calculated substitution curve consists of
two overlapping parabolae, one on the interval [1,13] and
one on the interval [13,31]. The first differences increase
monotonically until the 13th trimester and decrease monoton-
ically subsequently, indicating an upper turning point of the
marginal substitution curve in the interval [12,13]. Moreover,
they are negative on the first four trimesters, positive up to the
23rd trimester and negative afterwards, which is indicative
of the penetration rates on these ranges. Also, we see that
the PDP to VAX transition took 16 trimesters to go from
about 4% to 90%. The sequence of the second differences is
non-increasing, where the first twelve second differences are
positive and the last sixteen are negative. It follows that the
best fit consists of one convex section on the interval [1,14]
and one concave section on the interval [13,31]. Hence, the
inflection point of the substitution curve lies in the interval
[12,13]. The discussion suggests that our method is able to
describe the substitution process everywhere except possibly
at the beginning of the data, where substitution is still quite
immature.

IV. CONCLUDING REMARKS

We have proposed a quadratic programming calculation
that gives the best least squares fit to data values contami-
nated by random errors subject to nonnegative third divided
differences. The method is suitable when the data exhibit
a sigmoid trend, where a concave region is followed by
a convex one. The method is also suitable when it would
be better to employ non-positive instead of nonnegative
divided differences, in which case a convex region precedes
a concave one. The fit consists of a certain number of
overlapping parabolae, which not only provides flexibility in
data fitting, but also helps managing further operations with
the data fit like interpolation, extrapolation, differentiation
and integration. Moreover, the interval of the inflection point
of the fit is provided automatically by the calculation.

This data fitting procedure may be used in many situations,
when analyzing processes that are subject to diminishing
marginal returns, as for example in modeling product life-
cycles. Analogously, for increasing marginal returns, as for
example in estimating cost and production functions. The
accompanying FORTRAN program is suitable for calcula-
tions that involve several thousand data points and it would
be most useful for real problem applications. Numerical
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experiments in order to test the efficiency of the method
are on the way. Moreover, it would be very helpful to try to
solve particular problems of sigmoid character, in order to
receive guidance from numerical results and from modeling
practices. In addition, there is nothing to prevent combining
certain features of our method with the logistic curve or the
Gompertz curve and other parametric sigmoid forms if there
exists an opportunity for improved practical analyses.
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Fig. 3. Graphical representation of the data given in Table II, with the
notation of Fig. 2.
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