
 

 
Abstract—The parameters of the two parameter 
exponential distribution are estimated in this article 
based on complete and Type-I censored samples from 
the Bayesian viewpoint. Bayes point estimates and 
credible intervals for the scale and location parameters 
are derived under the assumption of squared error loss 
function. An illustrative example is provided to motivate 
the proposed Bayes point estimates and the credible 
intervals. The proposed Bayes estimates and the 
maximum likelihood estimates are compared via Monte 
Carlo simulations.  
    
Index Terms— Bayes estimate, Censored samples, 
Credible interval, Exponential distribution. 
 
 

 
I.  INTRODUCTION 

 
ET nXXX ,...,, 21  be a random sample of size n  from a                

two parameter exponential distribution with scale 
parameter   and location parameter  , denoted by ),( E , 
where   and   are independent. The probability density 
function (p.d.f) of X  at x  is:  

)(),|(   xexf ; x 0  and 0                       (1) 

This distribution plays an important role in survival and 
engineering reliability analysis; see for example 
Balakrishnan and Basu [2].  
In life testing experiments, it often happens that the 
experiment is censored in the sense that the experimenter 
may not be in a position to observe the life times of all items 
put on test because of time limitations and other restrictions 
on the data collection. The two most common censoring 
schemes are Type-I and Type-II censoring schemes. In 
Type-I censoring scheme, the experiment continue up to a 
preselected fixed time T  but the number of failures is 
random, whereas in Type-II censoring scheme, the 
experimental time is random but the number of failures is 
fixed, k . 
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The estimation of these parameters based on Types I and II 
censored samples has been considered by several authors in 
the literature from the Bayesian point of view. El-Sayyed 
[5] has derived Bayes estimate and unbiased estimate for 

1  . Singh and Prasad [6], [3] have considered the 

problem of estimating the scale parameter 1 . They 

propose some empirical Bayes estimators for 1  under the 
situation that the scale parameter   is known. Ye and Yang 
[4] considered the empirical Bayes estimation of location 
parameter of two parameter exponential distribution under 
Type-II censoring model. Sarhan [1] studied empirical 
Bayes estimates in one parameter exponential distribution, 
Zhou [10, 11] considered Bayes estimation and prediction 
for one and two parameter exponential distribution. Singh 
and Kumar [7, 8] proposed Bayes estimators for exponential 
scale parameter under multiply type II censoring.  Singh and 
Kumar [9] proposed Bayes point estimates for the scale 
parameter under type-II censoring by using generalized non-
informative prior and natural conjugate prior. Shi and Yan 
[12] proposed empirical Bayes estimate for the scale-
parameter under Type-I censored sample assuming known 
location parameter. 
 
It is noted that in many practical applications, the value of 
the parameter   may not be known. Therefore, it is useful 
and important to consider the problem of estimation for the 
parameter   when   is unknown. 
 
This paper aims to derive Bayes point estimates and credible 
intervals for the scale and location parameters of a two 
exponential distribution based on complete and Type-I 
censored samples separately. Bayes point estimates are 
proposed under the assumption of the squared error loss 
function.  
The scale parameter   is assumed to follow exponential 
distribution with hyper parameter A , and the location 
parameter   is assumed to follow uniform distribution from 
zero to B . Suggestions for choosing the hyper parameters 
A  and B  are provided. 

 
The rest of this paper is organized as follows: Section 2 
describes the probability models that are needed in this 
work. Bayes point estimates for the scale and location 
parameters are proposed in Section 3 based on complete and 
Type-I censored samples separately. Credible intervals for 
those parameters are derived in Section 4. An illustrative 
example is provided in Section 5. Finally, the main 
conclusions are included in Section 6. 
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II. MODELS 
 

A. Complete Sample 
    Let ),(~,...,, EXXX n21 , the p.d.f of X  is given in 

(1.1). The likelihood function of the complete sample 

nXXX ,...,, 21  given   and   is given by:   
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The parameter   is assumed to follow an exponential 
distribution with p.d.f given by: 
       0  AeAg A ;)(                                                    (3) 
where the hyper parameter A  is a preselected positive real 
number that is chosen to reflect our beliefs about the 

expected value of 

1

, because the expected value of   

equals 
A

1
.  

The parameter   is assumed to follow a uniform 
distribution with p.d.f given by: 

B
B

p   0
1

;)(                                                           (4) 

where the hyper parameter B  is a preselected nonnegative 
real number that is chosen to reflect our beliefs about the 
lower bound of the x's , which can be easily assumed to 
equal the minimum observed value, )(1x .  

    In order to construct the Bayes estimates for   and  , 
the joint posterior p.d.f of   and   given the observations 
 nxxx ,...,, 21  is derived in this section for the complete 

sample  nxxx ,...,, 21 . 

The joint posterior p.d.f of   and   given  nxxx ,...,, 21 is 

given by: 
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The marginal posterior p.d.f of  given  nxxx ,...,, 21  is 

given by: 
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where 0 , ED,  and C are defined in (5).  

The marginal posterior p.d.f of   given  nxxx ,...,, 21  is 

given by:                                        
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where )1(0 xB    and C is defined in (5). 

 
B. Type I Censored Sample 

In type-I censored samples, suppose that a random sample 
of n units is tested until a predetermined time T ( )1(x ) at 

which time the test is terminated. Failure times for k 
observations are observed, where k is a random variable. 
Thus the lifetimes are observed only if Txi  ; ni ,...,,21 .  

Let 
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zero. The likelihood function in this case is given by: 
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The joint posterior p.d.f of   and   based on the type-I 
censored sample is given by: 

 
     

     
     

,|,...,,

,|,...,,
                      

,,...,,|,

0 0
21

21

21

 




B

nI

nI

nI

ddpgxxxL

pgxxxL

Txxxh






 

where )(g  and )(p  are defined in (3) and (4) 
respectively. Therefore     
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The marginal posterior p.d.f of  given  Txxx n;,...,, 21  is 

given by: 
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where 0 , 11 ED ,  and 1C are defined in (9).  
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The marginal posterior p.d.f of  given  Txxx n ,,...,, 21  is 

given by:                                 
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where )(10 xB    and 1C is defined in (9). 

 
 

III. POINT ESTIMATION of   and   
 

    In this section, Classical and Bayesian estimation for   
and   are proposed using the complete and Type-1 
censored samples separately. The squared error loss is 
assumed to construct the Bayes estimates.   
 

A.  Estimation from Complete Sample 
    In the case of complete sample, the Bayes point estimate 

C̂  of   under the squared error loss is the mean of the 

marginal posterior p.d.f of   given in (6), which is given 
by: 
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The Bayes point estimate ̂  of   under the squared error 
loss is the mean of the marginal posterior p.d.f of   given 
in (7), which is given by: 
                                           


B

nChC dxxxhE
C

0
21, ),...,,|()(ˆ

,
      

    






















 11
11

)1(

11
  

nnn EDnnD

B

C
                            

(13)  
The MLE of    and   from the complete sample are 
respectively:    
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B. Estimation from Type I Censored Sample 

In the case of type-I censored sample, the Bayes point 

estimate I̂  of   under the squared error loss is the mean 

of the marginal posterior p.d.f of   given in (10), which is 
given by: 
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The Bayes point estimate I̂  of   under the squared error 

loss is the mean of the marginal posterior p.d.f of   given 
in (11), which is given by: 
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The MLE of   and   from the type-I censored sample are 
respectively: 
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IV. CREDIBLE INTERVALS for   and   
 

A. Based on Complete Sample  
Based on the complete sample nxxx ,...,, 21 and by using the 

posterior density function of   that is defined in (6), the 
equal- tailed   %1001   credible interval for   is  UL  ,  

that satisfies: 
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Similarly, by using the posterior density function of   that 

is defined in (7) the equal-tailed   %1001   credible 
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B. Based on Type-I Censored Sample  
Based on a Type-I censored sample and by using the 
posterior density function defined in (10), the equal- tailed 
  %1001   credible interval for   is  IUIL ,, ,  that 

satisfies: 
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Similarly, by using the posterior density function of   that 

is defined in (11) the equal- tailed   %1001   credible 
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V.  NUMERICAL EXAMPLE 
 

Using Mathematica 5, if U  has a Uniform(0,1) distribution, 

then x  that satisfies )(1   xeU  follows ),( E . Let 

Data I = {1.2373, 1.25419, 1.54525, 1.38357, 1.2655} be a 
random sample of size 5 generated from )1,4(E . 

Table 1 summarizes the values of ML and the Bayes 
estimates for the scale and location parameters obtained 
from data I. Those estimates were computed based on the 
complete and Type-I censored samples. The hyper 
parameters A  and B  were assumed to equal one over of 
the available sample's mean and the minimum observation 
respectively. 
Based on the complete sample, the MLE of the parameters 
  and   are respectively: 

 0137.10
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The proposed Bayes estimates are 
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



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 nnnC
EDnnD

B

C
 .  

The hyper parameters A  and B  are assumed to equal 

7478540
68586

5

1

.



.x

n
A

n

i
i

and 237311 .)(  xB . 

So, 3313710.C , 247171.D  and 433657.E . Therefore 

00952.4ˆ
, CB , and 17514.1ˆ

, CB . 

 
Based on Type-I censored sample, two schemes are studied, 
when 3.1T  and 5.1T . 

When 31.T , the MLEs are 5957.17ˆ
, IMLE   and 

2373.1ˆ
)1(,  xIMLE . The hyper parameters A  and B  are 

assumed to equal 798514.0

1






n

i
iix

k
A


 and 

2373.1)1(  xB . So, 09631.11 C , 96901.01 D  and 

15549.71 E .Therefore 10261.3ˆ
, IB ,and 14502.1ˆ

, CB . 

When 5.1T , the MLEs are 80927.8ˆ
, IMLE   and 

2373.1ˆ
)1(,  xIMLE . The hyper parameters A  and B  are 

assumed to equal 778127.0

1






n

i
iix

k
A


 and 

2373.1)1(  xB . So, 433463.01 C , 23219.11 D  and 

41868.71 E . Therefore 2483.3ˆ
, IB , and 15641.1ˆ

, CB . 

 
It becomes apparent from this study that the Bayes estimates 
give excellent results and it performs, in terms of the mean 
square error MSE, better than the MLE for estimation the 
parameters   and   based on both complete and Type-I 
censored schemes.  
The 95% credible interval for the parameters   and   are 
summarized in Table 1 based on the complete sample and 
Type-I censored samples with 3.1T  and 

5.1T separately. 
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TABLE I 

95% CREDIBLE INTERVALS for   and   for the EXAMPLE 

Param
eter 

based on 
Complete 

sample 

based on Type-I 
censored sample with 

31.T  

based on Type-I 
censored sample 

with 51.T  

  (0.97, 1.41) (1.25, 1.37) (1.24, 1.42) 

  (1.30, 8.21) (0.66, 7.46) (0.89, 7.12) 

 
 
Table 1 shows that the proposed credible interval gives 
reasonable estimates for   in all cases. It can be observed 
from this table that this credible interval estimates   by 
reasonable values only when the complete sample is used, 
and it gives bad lower bound when Type-I censored 
schemes are used. 
 

 
VI. SIMULATION STUDIES 

 
In this section, the performance of the MLE and the 
proposed Bayes estimates of   and   is investigated 
through a simulation study based on both complete and 
various Type-I censored schemes. The simulation study is 
carried out for various values of the 
combination  Tn,,,  ; for )2,5.0(),(  , )3.0,3( , )1,1(  

and )0,2( , the termination time T  is assumed arbitrary to 

equal 8  and 10 . The hyper parameters A  and B  are 
assumed to equal one over the available sample mean and 
the minimum observed value, )1(x  respectively. 1000 

simulated datasets are generated from ),( E  by using 

Mathematica 5.  For the purpose of comparison, the average 
value of the MLE and the proposed Bayes estimates along 
with the mean squared error (MSE) in parentheses are 
reported by assuming   5n  and 10  in Table 1 and Table 
2 respectively. Estimators with the smallest MSE values are 
preferred.  
 
 
 
 

TABLE II 
EXPECTED MLE and BE along with MSE when  5n  

Parameter 

Based on 
Complete Sample 

( 5n ) 

Based on Type-I 
Censored Sample 

( 8T ) 

Based on Type-I 
Censored Sample  

( 10T ) 

MLE BE MLE BE MLE BE 

50.  
0.85 

(0.41) 
0.80 

(0.28) 
0.85 

(0.41) 
0.80 

(0.28) 
0.85 

(0.41) 
0.79 

(0.29) 

2  
2.43 

(0.39) 
2.08 

(0.22) 
2.43 

(0.39) 
2.08 

(0.22) 
2.04 

(0.33) 
2.05 

(0.18) 

3  
5.2 

(18.4) 
1.77 

(1.55) 
5.2 

(18.44) 
1.77 

(1.55) 
5.04 

(13.61) 
1.77 

(1.55) 

30.  
0.37 

(0.01) 
0.26 

(0.01) 
0.37 

(0.01) 
0.26 

(0.01) 
0.37 

(0.01) 
0.27 

(0.01) 

1  
1.66 

(1.34) 
1.33 

(0.40) 
1.66 

(1.34) 
1.33 

(0.40) 
1.66 

(1.73) 
1.32 

(0.43) 

1  
1.18 

(0.07) 
0.99 

(0.03) 
1.18 

(0.07) 
0.99 

(0.03) 
1.20 

(0.08) 
1.01 

(0.04) 

2  
3.37 

(9.73) 
1.31 

(0.51) 
3.38 

(9.73) 
1.31 

(0.51) 
3.33 
(7.2) 

1.30 
(0.53) 

0  
0.1 

(0.02) 
0.06 

(0.01) 
0.095 
(0.18) 

0.058 
(0.01) 

0.097 
(0.02) 

0.058 
(0.01) 

 
 

 
TABLE III 

EXPECTED MLE and BE along with MSE when 10n  

Parameter 

Based on 
Complete Sample 

( 10n ) 

Based on Type-I 
Censored Sample 

( 8T ) 

Based on Type-I 
Censored Sample  

( 10T ) 

MLE BE MLE BE MLE BE 

50.  
0.62 

(0.07) 
0.61 

(0.062) 
0.62 

(0.07) 
0.60 

(0.063) 
0.62 

(0.071) 
0.61 

(0.063) 

 
2  

2.20 
(0.08) 

2.00 
(0.046) 

2.20 
(0.08) 

2.00 
(0.05) 

2.19 
(0.07) 

1.98 
(0.04) 

3  
3.75 

(2.48) 
2.23 

(0.72) 
3.75 

(2.48) 
2.23 

(0.72) 
3.65 

(2.29) 
2.20 

(0.76) 

30.  
0.34 

(0.00) 
0.29 

(0.00) 
0.34 

(0.00) 
0.29 

(0.00) 
0.33 

(0.00) 
0.29 

(0.00) 

1  
1.27 

(0.346) 
1.18 

(0.205) 
1.27 

(0.35) 
1.18 

(0.21) 
1.23 

(0.25) 
1.14 

(0.15) 

1  
1.1 

(0.02) 
1.00 

(0.01) 
1.11 

(0.02) 
1.00 

(0.01) 
1.10 

(0.02) 
1.00 

(0.01) 

2  
2.42 

(0.94) 
1.61 

(0.191) 
2.42 

(0.94) 
1.61 

(0.191) 
2.55 

(1.12) 
1.63 

(0.17) 

0  
0.051 
(0.01) 

0.031 
(0.00) 

0.051 
(0.01) 

0.031 
(0.00) 

0.049 
(0.01) 

0.30 
(0.00) 

 
In terms of the MSE, It becomes apparent from Tables 2 and 
3 that the proposed Bayes estimates perform better than the 
MLE based on complete and Type-I censored samples. It 
can be also noticed from those tables that the MLE and the 
proposed Bayes estimates perform better as n increases.  
 

VII. CONCLUSIONS 
 

In this article, a procedure for estimating the scale and 
location parameters,   and  , of a two parameter 
exponential distribution was developed based on complete 
and Type-I censored samples. This approach was adopted 
from Bayes point of view. Prior probability distributions for 
the parameters   and   were assumed to be exponential 
and uniform distributions respectively. Bayes point 
estimates and credible intervals for   and   were proposed 
in the cases of complete and Type-I censored samples under 
the squared error loss. It was shown from simulation studies 
that the proposed Bayes estimate performed better than the 
MLE for estimation   in the case of Type-I censored 
sample. Moreover, the proposed credible interval gave 
excellent results for estimation the parameters   and   
based on complete samples.  
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