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Abstract—Outliers can be defined simply as an observation
(or a subset of observations) that is isolated from the other
observations in the data set. There are two main reasons that
motivate people to find outliers; the first is the researchers
intention. The second is the effects of an outlier on analy-
ses. This article does not differentiate between the various
justifications for outlier detection. The aim is to advise the
analyst of observations that are considerably different from
the majority. This article focuses on the identification of
outliers using the eigenstructure of S and S(i) in terms of
eigenvalues, eigenvectors and principle component. Note that
S(i) is the sample covariance matrix of data matrix X(i), where
the subscript i in parentheses is read as ”with observation i
removed from X”. The idea of using the eigenstructure as a
tool for identification of outliers is motivated by Maximum
Eigen Difference (MED). MED is the method for identification
of outliers proposed by [1]. This method utilises the maximum
eigenvalue and the corresponding eigenvector. It is noted that
examination of observations effect on the maximum eigenvalue
is very significant. The technique for identification of outliers
discuss in this article is applicable to a wide variety of settings.
In this article, observations that are located far away from the
remaining data are considered to be outliers.

Index Terms—outliers, eigenvalue, eigenvector, covariance
matrix, principle component.

I. INTRODUCTION

THIS article focuses on the identification of outliers using
the eigenstructure of S and S(i) in terms of eigenvalues,

eigenvectors and principle component. Note that S(i) is the
sample covariance matrix of data matrix X(i), where the
subscript i in parentheses is read as ”with observation i
removed from X”.

The idea of using the eigenstructure as a tool for identifi-
cation of outliers is motivated by Maximum Eigen Difference
(MED). This method utilizes the maximum eigenvalue and
the corresponding eigenvector. It is noted that examination of
the observations effect on the maximum eigenvalue is very
significant. The reason is that outliers that lie in the direction
close to the maximum eigenvalue or vice versa, will change
the maximum eigenvalue [1]. The maximum eigenvalue
contains maximum variance, therefore, the outliers detected
by the maximum eigenvalue have a greater effect on variance,
and they need extra attention.

The article is organized as follows: Section II describes a
general idea of the influence eigenvalues and eigenvectors.
Section III explains the technique, influence eigen for iden-
tification of outlier. Three different scenarios are considered
to generate the data set from the multivariate distributions in
this article are described in Section IV. Finally, Section V
provides illustrative examples before presenting the conclu-
sion.
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II. INFLUENCE EIGENVALUES AND EIGENVECTORS

Some statistical methods are concerned with eigenstructure
problems and a few statistics are the functions of eigenvalues
in multivariate analysis. A test statistic is considered as a
function of eigenvalues of a transition matrix to test a Markov
chain for independence [5] and eigenstructure methods are
applied to study the co-linear problem in multivariate linear
regression [7].

Now, consider the influence of eigenvalues λj and eigen-
vectors vj for matrix XT X where X is an n× p observation
matrix consisting of n observations for p variables.

If ith row of matrix X is deleted, one can write it as
X(i) where the subscript i in parentheses is read as “with
observation i is removed from X”, i.e. the ith row of X
is xT

i then XT
(i)X(i) = XT X − xix

T
i . Let XT X have the

eigenvalues-eigenvectors pairs

(λ1, v1), (λ2, v2), ..., (λp, vp),

and the eigenvalues are in descending order

λ1 ≥ λ2 ≥ ... ≥ λp, (1)

and let XT
(i)X(i) have the eigenvalues and eigenvectors pairs

(λ1(i), v1(i)), (λ2(i), v2(i)), ..., (λp(i), vp(i)),

and the eigenvalues are also in descending order

λ1(i) ≥ λ2(i) ≥ ... ≥ λp(i). (2)

Define,
V(i) = [υ1(i), υ2(i), . . . , υp(i)], (3)

and

VT
(i)S(i)V(i) = VT

(i)(X
T
(i)X(i))V(i)

= diag[λ1(i), λ2(i), . . . , λp(i)]

= Λ(i). (4)

Then influence functions of eigenvalues λj and eigenvec-
tors vj are given respectively by [4] as follows:

IF (x;λj) = (xT vj)
2 − λj (5)

and

IF (x; vj) = −xT vj
∑
k ̸=j

xT vk(λk − λj)
−1vk. (6)

If one wishes to examine the ith observation’s influence on
the eigenvalues and eigenvectors of XT X, it is easy to remove
the ith observation from the full data set and then compare
the eigenvalues and eigenvectors of the remaining data with
that of the complete data.

Lemma 1: The properties of eigenvalues and eigenvectors
are given as follows:

1) λj ≥ λj(i);
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2) The relationship of eigenvalues λj and λj(i) is given
by [1]:

λj(i) = λj −
1

n− 1
(l2ij − λj)−

1

2(n− 1)2
l2ij

[
1 +

∑
k ̸=j

l2ij
λk − λj

]
+O(

1

n3
), (7)

where lij = (xi − x̄)T vj ;

3) The relationship between eigenvectors of vj and vj(i)
is obtained based on the observation matrix X given
by [1] as follows:

vj(i)

= vj +
lij

n− 1

∑
k ̸=j

likvk

λk − λj

−
1

2(n− 1)2

∑
k ̸=j

[ l2ij l
2
ikvj

(λk − λj)2
−

2l2iklij

(λk − λj)

∑
k ̸=j

likvk

λk − λj

+
2l3ij likvk

(λk − λj)2

]
+O(

1

n3
). (8)

Proof: (i) λj ≥ λj(i) is obtained from the following
matrix operations: It is noted that

XT X = XT
(i)X(i) + xix

T
i ,

where XT X, XT
(i)X(i) and xix

T
i are symmetric matrices and

xix
T
i is of rank unity, there exists on an orthogonal matrix

Q such that

QT (xix
T
i )Q =

(
s 0
0 0

)
,

where s is the unique non-zero eigenvalues of xix
T
i , and

consider

QT (XT
(i)X(i))Q =

(
t cT

c XT
∗ X∗

)
,

then there is an orthogonal matrix P(k−1)(k−1) so that

PT (XT
∗ X∗)P = Λ∗ = diag{λ1, λ2, ...λk−1}

and one can define an orthogonal matrix

G = Q
(

1 0
0 P

)
,

then

GT
(XT X)G =

(
1 0

0 PT

)
QT

(XT
(i)X(i))Q

(
1 0
0 P

)
+

(
1 0

0 PT

)
QT

(xix
T
i )Q

(
1 0
0 P

)
=

(
t + s cT P
PT c Λ∗

)
,

where
k∑

j=1

λj = t+ s+
k−1∑
i=1

λi

= t+
k−1∑
i=1

λi + s

=
∑
j=1

λj(i) + s. (9)

Note that s ≥ o, and λj ≥ λj(i) is obtained for any
i = 1, 2, ..., n.

III. INFLUENCE EIGEN FOR IDENTIFICATION OF OUTLIER

Let the sample covariance matrix be

S =
1

n
XT (In − 1

n
1n1

T
n )X, (10)

where 1 is the n-vector of ones and In is the identity matrix
of n × n. If X(I) and S(I) are the data matrix and sample
covariance matrix, respectively, when the m observations
are deleted and the subscript I in parentheses is read as
“with a set of m observations I removed from X”, note that
I = {i1, i2, . . . , im} where 1 ≤ ij ≤ n and j = 1, 2, . . . ,m.

Therefore, one has

S(I) =
1

n−m
XT

(I)(In−m − 1

n−m
1n−m1T

n−m)X(I) (11)

and
SI =

1

m
XT

I (Im − 1

m
1m1T

m)XI . (12)

Lemma 2: It is noted that
1) The relationship among S, SI and S(I) is given as

follows:
S(I) =

n
n−mS− nm

(n−m)2 [
n−m
n SI +(x̄I − x̄)(x̄I − x̄)T ];

2) If let I = {i} with a single observation, then
S(i) =

n
n−1S − n

(n−1)2 (xi − x̄)(xi − x̄)T .

Proof: (i) Suppose that equations 10-12 are biased
estimates, they can be used to developed unbiased estimates
as in lemma 2.

(n−m)S(I)

= XT
(I)

(
In−m −

1
n−m

1n−m1Tn−m

)
X(I)

= XT
(I)X(I) −

1
n−m

XT
(I)1Tn−m1n−mX(I)

= nS −
nm

n−m
(x̄− x̄I)(x̄− x̄I)

T +mx̄I x̄
T
I − XT

I XI (13)

Now simplify equation 13 as follows:

(n−m)S(I)

= nS −
nm

n−m
(x̄− x̄I)(x̄− x̄I)

T −m
(XT

I XI

m
− x̄I x̄

T
I

)
= nS −

nm

n−m
(x̄− x̄I)(x̄− x̄I)

T −mSI (14)

(ii) By using equation 14, one can get the relationship
between S, SI and S(I) in (i) where x̄ =

∑n
i=1 xi

n and
x̄I =

∑
i⊂I xi

m represent the mean vector of all observations
and the mean vector of the observations indexed by I
respectively. Next, replace m = 1 in the following equation

(n− 1)S(I)

= nS −
nm

n−m
(x̄− x̄I)(x̄− x̄I)

T −m
(XT

I XI

m
−

XT
I 1m1TmXI

m2

)
hence one can find equation (ii) in lemma 2 as following

(n− 1)S(i)

= nS −
n

n− 1
(x̄− x̄i)(x̄− x̄i)

T − 1
(XT

I XI

1
−

XT
I XI

12

)
= nS −

n

n− 1
(x̄i − x̄)(x̄i − x̄)T

This completes the proof of lemma 2.
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Lemma 3: Let {(λj , vj), j = 1, 2, ..., p} be the pair of
eigenvalues and eigenvectors of sample covariance matrix
S. {(λj(i), vj(i)), i = 1, 2, ..., n} be the pair of eigenvalues
and eigenvectors of covariance matrix S(i). One now has

1) λj(i) =
n

n−1λj − n
(n−1)2 ||xi − x̄i||2Gi

where the weights Gi satisfy 0 ≤ Gi ≤ 1 and∑
i

Gi = 1;

2) n
n−1λj+1 ≤ λj(i) ≤ n

n−1λj , j = 1, 2, ..., p.

Proof: It follows immediately from Theorem 1 in [6]

1) Denote αi = (xi − x̄)/∥xi − x̄∥ and from lemma 2,
one has

S(i) =
n

n− 1
S − n

(n− 1)2
(xi − x̄)(xi − x̄)T . (15)

Replace αi in equation 15 which implies

S(i) =
n

n− 1
S − n

(n− 1)2
∥xi − x̄∥2αiα

T
i . (16)

Given that

n

n− 1
λj −

n

(n− 1)2
∥xi − x̄∥2 ≤ λj(i) ≤

n

n− 1
λj ,

j = 1, 2, . . . , p.

Thus, the weights Gi satisfies 0 ≤ Gi ≤ 1 such that

λj(i) =
n

n− 1
λj −

n

(n− 1)2
∥xi − x̄∥2Gj . (17)

Now, the preceding equation can be written as

traceS(i) =
n

n− 1
traceS− n

(n− 1)2
∥xi− x̄∥2. (18)

From equation 17, one has

trace S(i) =

p∑
j=1

λj(i)

=
n

n− 1
trace S −

n

(n− 1)2
∥xi − x̄∥2

p∑
i=1

Gi. (19)

As a consequence of equations 18 and 19, one has
p∑

j=1

Gj = 1.

2) The proof is given in Corollary 1 and 2 in [6]

Theorem 4: The influence eigen j for each observation i
can be denoted by

∆∗
j(i) = (xT

i vj)
2 +

n∑
k=1
k ̸=i

{
(vj + vj(i))

Txkx
T
k (vj + vj(i))

}
,

(20)
where j = 1, 2, . . . , p.

Proof: According to [2] an influence interpretation of
the Euclidean distance can be considered as the total of
influence eigen:

n

(n− 1)
(xi − x̄)T (xi − x̄)

=

p∑
j=1

{ 1

n− 1

(
l2ij − λj

)
+

1

2(n− 1)2
l2ij

(
1 +

∑
k ̸=j

l2ij
λk − λj

)}
.

(21)

By using the relationship of influence eigenstructure in
lemma 1, equation 21 can be re-written as follows:

n

(n− 1)
(xi − x̄)T (xi − x̄)

=

p∑
j=1

[
(xT

i vj)
2 +

n∑
k=1
k ̸=i

{
(vj + vj(i))

Txkx
T
k (vj + vj(i))

}]
.

(22)

From equation 22, the influence eigen j for each observation
i can be denoted by

∆∗
j(i) = (xT

i vj)
2 +

n∑
k=1
k ̸=i

{
(vj + vj(i))

Txkx
T
k (vj + vj(i))

}
,

(23)
where j = 1, 2, . . . , p.

However, if one considers the influence eigen j on I , thus
Theorem 4 now becomes

∆∗
j(I) =

−m

n−m

n∑
k=1

(xT
k vj)

2 − nm

(n−m)2
vTj ×[n−m

n
SI + (x̄I − x̄)(x̄I − x̄)T

]
vj (24)

Suppose that the influence of an observation, i.e. an outlier
on statistics such as jth eigenvalues, λj or eigenvectors, vj
of a sample covariance matrix is simply the change in λj or
vj when the ith observation is deleted from the sample.

Recall that this article considers the maximum eigenvalue
and the corresponding eigenvector as the object of interest.
From equation 1, it is given that

max{λ1, λ2, . . . , λp} = λmax

= λ1, (25)

where λ1 corresponds to v1. Now, let j = 1, and equation
20 becomes

∆∗
1(i) = (xT

i v1)
2 +

n∑
k=1
k ̸=i

{
(v1 + v1(i))

Txkx
T
k (v1 + v1(i))

}
.

(26)
Therefore, one can consider the influence eigen, ∆∗

1(i) as
a tool to identify a potential influence observation, i.e.
outlier in data matrix X. Perhaps the best advice is that the
observation that is obviously more extreme than most of the
remaining observations in the data set should be examined.

As a consequence, by using ∆∗
1(i), potential outliers in X

can be identified by plotting the index plot of {i,∆∗
1(i)}. Note

that ith observation can be considered as a potential outlier
if it is located further away than the remaining observations
in the data set. By using lemma 2, 3 and equation 26 the
algorithm for influence eigen, ∆∗

1(i) is given as follows:
• Step 1 : Generate the sample covariance matrix S and

S(i);
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• Step 2 : Compute the eigenstructure of S and S(i).
Denote the eigenstructure of S and S(i) as {Λ,V} and
{Λ(i),V(i)} respectively.

• Step 3 : Choose the maximum eigenvalue and the
corresponding eigenvector pair, max{λj , vj} and
max{λj(i), vj(i)} of {Λ,V} and {Λ(i),V(i)} respec-
tively, i.e. {λ1, v1} and {λ1(i), v1(i)};

• Step 4 : Compute ∆∗
1(i) = (xT

i v1)
2 +

n∑
k=1
k ̸=i

{
(v1 +

v1(i))
Txkx

T
k (v1 + v1(i))

}
for each observation;

• Step 5 : Develop the index plot of {i,∆∗
1(i)},

i = 1, 2, . . . , n.
The outliers that are detectable from the index plot are

those which inflate variance and covariance. If an outlier is
the cause of a large increase in variances of the original
variables, then it must be extreme on those variables [2].
Thus, one can identify it by looking at the index plot.

IV. SIMULATION DATA SET

The influence eigen is tested on the simulation data
set.Three different scenarios are considered to generate the
data set from the multivariate distributions with sample size
of 3005 and dimensions of 100. The sample size contains 5
outliers.

A. Scenario 1: outliers with the same shapes but different
locations

There are 2 conditions considered in the first scenario:
• Condition 1 : A random vector of x1, x2, . . . , xn is

drawn from a p−variate normal distribution with mean
vector µ and positive definite covariance matrix Σ,
i.e. N(µ,Σ). Next x∗

1, x
∗
2, . . . , x

∗
m is another random

sample drawn from a p−variate normal distribution with
mean vector µc1 and a similar covariance matrix Σ, i.e.
N(µc1,Σ). Note that m is the number of outliers. Later
these two sets of data vector are merged;

• Condition 2 : The x1, x2, . . . , xn random vector is
developed as in condition 1. However, x∗

1, x
∗
2, . . . , x

∗
m

is constructed by using N(µc2,Σ), which is closer to
the majority of data parental distribution in condition 1,
i.e. µc2 < µc1;

B. Scenario 2: outliers with different shapes and different
locations

In scenario 2, x1, x2, . . . , xn is a random vector drawn
for p − variate normal distribution with mean vector µ and
positive definite matrix Σ and x∗

1, x
∗
2, . . . , x

∗
m is another set

of random vector from p − variate distribution with mean
vector µs2 and covariance matrix Σs2. Note that µ ̸= µs2

and Σ ̸= Σs2.

C. Scenario 3: outlier from a different probability law

Let x1, x2, . . . , xn be a random sample drawn from p −
variate normal distribution with mean vector µ and positive
definite covariance matrix Σ. Now generate x∗

1, x
∗
2, . . . , x

∗
m

drawn from p− variate student t distribution with z degrees
of freedom and correlation matrix Σs3. Note that Σ ̸= Σs3.

V. ILLUSTRATION BY SIMULATION DATA SET

The technique is used on the simulate data set which
generated following three scenarios described in previous
section. Recall that the last 5 observations in the simulated
data set are the outliers. Fig. 1 clearly displays these 5
outliers at the top of each index plot of ∆∗

1(i). It is noted
that in the index plot, there is a very large gap between
the outliers and the remaining observations, i.e. good data.
Generation of a multivariate data set from a population where
the good and bad data are closer to each other probably
causes the suggested technique not to perform. Nonetheless,
Fig. 2 indicates all 5 observations that are supposed to be
outliers in the data set are considered for condition 2.

Recall that scenario 2 generated a data set with different
shapes and different locations. It is known the last 5 observa-
tions in this data set are the outliers. Fig. 3 clearly displays
these 5 outliers at the top of each index plot of ∆∗

1(i). It
is noted there is a large gap between the outliers and the
remaining observations.

Fig. 4 also shows that ∆∗
1(i) is capable of identifying

outliers in a high-dimensional data set that contains outliers
coming from different probability of laws. Note that outliers
are denoted within the black circles.
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Fig. 1. 3D Scatterplot for Condition 1, Scenario 1.
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Fig. 2. 3D Scatterplot for Condition 2, Scenario 1.
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Fig. 3. 3D Scatterplot for Scenario 2.
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Fig. 4. 3D Scatterplot for Scenario 3.

VI. CONCLUSION

Sometimes, the identification of outliers is the main ob-
jective of the analysis, and whether to remove the outliers or
for them to be down-weighted prior to fitting a non-robust
model. This article does not differentiate between the various
justifications for outlier detection. The aim is to advise
the analyst of observations that are considerably different
from the majority. Note that the technique in this article is,
therefore, exploratory. The technique used in this article is
performed on large data set. In this article, observations that
are far away from the remaining data are considered to be
outliers.

If the ith observation is a potential outlier, their values
for ∆∗

1(i) are all situated at the top of the index plot; see
illustration of index plots in previous section. This is because
an outlier causes λ1 − λ1(i) values to be larger than other
observations. Note that λ1(i) value is smaller for an outlier.
This follows that ∆∗

1(i) become larger.
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