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Abstract—Collaborative Filtering technique is widely adopted
by online service providers in their recommender systems.
This technique provides recommendations based on users’
transaction history. To provide decent recommendations, many
online merchants (data owner) ask a third party to help
develop and maintain recommender systems instead of doing
that themselves. Therefore, they need to share their data with
these third parties and users’ private information is prone to
leaking. Furthermore, with increasing transaction data, data
owner should be able to handle data growth efficiently without
sacrificing privacy.

In this paper, we propose a privacy preserving data updating
scheme for collaborative filtering purpose and study its perfor-
mance on two different datasets. The experimental results show
that the proposed scheme does not degrade recommendation
accuracy and can preserve a satisfactory level of privacy while
updating the data efficiently.

Index Terms—data growth, SVD, updating, collaborative
filtering, privacy.

I. INTRODUCTION

ARecommender system is a program that utilizes algo-
rithms to predict users’ purchase interests by profiling

their shopping patterns. With the help of recommender
systems, online merchants1 could better sell their products
to the users who have visited their websites before. Most
recommender systems are based on collaborative filtering(CF
for short) techniques, e.g., item/user correlation based CF[1],
SVD (singular value decomposition) based latent factor
CF[2]. All of them require user transaction history so that
some model could be trained and used to provide recom-
mendations. In order to provide decent recommendations,
many online merchants buy services from professional third
parties to help build their recommender systems. In this
scenario, merchants need to share their commercial data
with the third party which has the potential for privacy
leakage of user information. Typical private information in
transaction data includes, but is not limited to, the ratings of
a user left on particular items and items that this user has
rated. People would not like others (except for the website
where they purchased the products) to know what they are
interested in and to what extent they like or dislike the items.
Thus privacy preserving collaborative filtering algorithms[3],
[4], [5] were proposed to tackle the problem. In a broader
area, i.e., PPDM (Privacy-Preserving Data Mining), data
perturbation techniques[6], [7] are applied to the data that
will be published. To protect users’ privacy, online merchants

Manuscript received March 02, 2012; revised April 16, 2012.
Xiwei Wang is with Department of Computer Science, University of

Kentucky, Lexington, KY, 40506-0633 USA. e-mail: J.Wang@uky.edu
Jun Zhang is a Professor in the Department of Computer Sci-

ence, University of Kentucky, Lexington, KY, 40506-0633 USA. e-mail:
jzhang@cs.uky.edu

1The term “online merchant” and “data owner” will be used interchange-
ably as they refer to the same thing in this context.

should process their data by perturbing the values in it with
some strategy before they release it to the third party.

In addition to privacy issue, the fast growth of the collected
data has also to be addressed as a problem to the data
owner. Once there is new data arriving, e.g., new items or
new users’ transaction records, it should be appended to the
existing data. To protect privacy, data owner needs to redo
the perturbation which may result in a high computational
cost. Moreover, if he redoes the perturbation on the whole
data, he needs to resend the full perturbed data to the third
party. This process also requires the model to be rebuilt on
the site of the third party. It can be quite a big burden to
provide fast real-time recommendations.

In this paper, we propose a privacy preserving data
updating scheme in collaborative filtering. This scheme is
based on truncated SVD updating algorithms[8], [9] and ran-
domization techniques which can provide privacy protection
when incorporating new data into the original one in an
efficient way. We start with the pre-computed SVD of the
original data matrix. New rows/columns are then built into
the existing factor matrices. We try to preserve users’ privacy
by truncating new matrix together with randomization and
post-processing. We also take into account the imputation
of missing values during the updating process to provide
high quality data for accurate recommendations. Results of
the experiments that are conducted on MovieLens dataset[2]
and Jester dataset[10] show that our scheme can handle data
growth efficiently and keep a low level of privacy loss. The
prediction quality is still at a good level compared with most
published results.

The remainder of this paper is organized as follows.
Section II outlines the related work. Section III defines
the problem and related notations. Section IV describes the
main idea of the proposed scheme. Section V presents the
experiments on two datasets and discusses the results. Some
concluding remarks and future work are given in Section VI.

II. RELATED WORK

SVD-based CF[2], [11] is one of the most successful latent
factor CF models. It focuses on reducing dimensionality of
the user-item rating matrix such that some “latent factors”,
which best explain user preferences, can be discovered. The
basic idea of SVD-based models is to factorize the user-
item rating matrix into two lower rank matrices, i.e., a “user
factor” matrix UF and an “item factor” matrix IF . Thus,
each user i and item j can be represented as a vector UFi (the
i-th row of UF ) and IFj (the j-th row of IF ), respectively.
The prediction of a rating from user i left on item j is made
by taking the inner product of UFi and IFj .

A significant issue in most CF models is the privacy
leakage. Users’ private information is 100% accessible with-
out any disguise to the provider of recommender systems.
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Canny[3] firstly proposed the privacy preserving collabora-
tive filtering (PPCF) that deals with the privacy leakage in
the CF process. In his distributed PPCF model, users could
control all of their data. A community of users can compute
a public “aggregate” of their data that does not expose
individual users’ data. Each user then uses local computation
to get personalized recommendations. Nevertheless, most
popular collaborative filtering techniques are based on a
central server. In this scheme, users send their data to a
server and they do not participate in the CF process; only
the server needs to conduct the CF. Polat and Du[4] adopted
randomized perturbation for both correlation-based CF and
SVD-based CF to provide privacy protection. They use
uniform distribution and Gaussian distribution to generate
random noise and apply the noise to the original data. They
then perform the CF algorithms on the perturbed data to
obtain the predictions. Differing from Canny, Polat and Du,
we focus on the framework in which data owner has all
original user data but he needs to do perturbation on it before
releasing it to a third party.

In this framework, data owner also needs to take care of the
fast data growth and should make sure the privacy protection
is still kept at a reasonable level after data updating. Among
all data perturbation methods, SVD is acknowledged as a fea-
sible and effective data perturbation technique. Stewart[12]
surveyed the perturbation theory of singular value decompo-
sition and its application in signal processing. A recent work
by Brand[8] demonstrated a fast low-rank modifications of
the thin singular value decomposition. This algorithm can
update an SVD with new rows/columns and compute its low
rank approximation very efficiently. Tougas and Spiteri[13]
proposed a partial SVD updating scheme that requires one
QR factorization and one SVD (on small intermediate matri-
ces and thus not expensive in computation) per update. Based
on their work, Wang et al.[14] presented an improved SVD-
based data value hiding method and tested it with clustering
algorithm on both synthetic data sets and real data sets.
Their experimental results indicate that the introduction of
the incremental matrix decomposition produces a significant
increase in speed for the SVD-based data value hiding model,
better scalability, and better real-time performance of the
model. Our scheme is similar to this model but we have
modified the SVD updating algorithm plus randomization
and post-processing so that it can be incorporated into SVD-
based CF smoothly.

III. PROBLEM DESCRIPTION

In this paper, we discuss the privacy issue of data updating
for collaborative filtering purpose. The data is referred to
as the user-item rating matrix (it is typically very sparse),
denoted by R. Suppose we have m users and n items, then
R has a dimension of m× n, i.e., R ∈ R

m×n. When new
users’ transactions are available, the new rows, denoted by
T ∈ R

p×n, should be appended to the original matrix R, as
[

R
T

]
→ R′ (1)

Similarly, when new items are collected, the new columns,
denoted by F ∈ R

m×q , should be appended to the original
matrix R, as

[
R F

] → R′′ (2)

Nonetheless, data owner could not simply release T or F
because they contain the real user ratings which are users’
private information. He can not directly release R′ or R′′

either due to both the scalability and privacy issue. An
ideal case is, suppose a perturbed version (SVD-based) of
R with privacy protection has been released, data owner
only releases the perturbed incremental data, say T̃ and F̃
which preserves users’ privacy and does not degrade the
recommendation quality.

IV. PRIVACY PRESERVING DATA UPDATING SCHEME

In this section, we will present the data updating scheme in
collaborative filtering that could preserve the privacy during
the whole process. We try to protect users’ privacy in three
aspects, i.e., missing value imputation, randomization-based
perturbation and SVD truncation. The imputation step can
preserve the private information – “which items that a user
has rated”. However, since pure imputation will typically
generate same values and fill the empty entries with these
values, the matrix is vulnerable to attack. This also raises
another kind of private information – “what are the actual
ratings that a user left on particular items”. In this scenario,
randomization and truncated SVD techniques are used to
do a second phase perturbation that solves the problem.
On one hand, random noise can alter the rating values a
bit while leaving the distribution unchanged. This is very
crucial in data mining applications because data utility must
be guaranteed when doing perturbation. On the other hand,
truncated SVD is a naturally ideal choice in data perturbation.
It captures the latent properties of a matrix and eliminates the
useless noise. If given a well-chosen truncation rank, SVD
can provide a good balance between data privacy and its
utility.

As stated in the previous section, new data could be treated
as new rows or columns in the matrix. They should be
appended to the original matrix, i.e., R and further perturbed
to protect users’ privacy. Hence, we will discuss our scheme
by row updating and column updating separately.

A. Row/User Updating

In (1), we see that T is added to R as a series of
rows. The new matrix R′ has a dimension of (m+ p)× n.
Assuming the truncated rank-k SVD of R has been computed
previously,

Rk = Uk · Σk · V T
k (3)

where Uk ∈ R
m×k and Vk ∈ R

n×k are two orthogonal
matrices; Σk ∈ R

k×k is a diagonal matrix with the largest k
singular values on its diagonal.

As mentioned in Section III, the user-item rating matrix
is a sparse matrix so before we do SVD on it, we should
first impute the missing values. Similar with [2], we use the
column mean, i.e., the mean rating value of each item, to fill
the empty entries. These mean values are held in a vector
�rmean = (r̄1, · · · , r̄n) and will be used to help update SVD.

For new rows T , before incorporating it into the existing
matrix, an imputation step is performed. In this step, the
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empty entries should be filled with values that have knowl-
edge from both the mean values of existing matrix and the
ratings in new data. We use (4) to calculate new column
mean.

r̄′j =
m× r̄j +

∑m+p
i=m+1,rij �=0 rij

m+
∑m+p

i=m+1,rij �=0 1
(4)

Note that the new column mean does not affect the old
matrix, which should be kept unchanged as the third parties
hold the perturbed old matrix and data owner only releases
the perturbed new data.

Thus, we obtain the imputed matrices: R̂ (with its factor
matrices Ûk, Σ̂k and V̂k) and T̂ . Now the problem space has
been converted from (1) to (5):[

R̂

T̂

]
→ R̂′ (5)

After imputation, random noise that obeys Gaussian dis-
tribution is added to the new data T̂ , yielding Ṫ . Then we
follow the procedure in [13] to update the matrix. First, a QR
factorization is performed on T̈ = (In− V̂k · V̂ T

k ) · ṪT , where
In is an n×n identity matrix. Thus we have QT ·ST = T̈ , in
which QT ∈ R

n×p is an orthonormal matrix and ST ∈ R
p×p

is an upper triangular matrix. Then

R̂′ =
[

R̂

T̂

]
≈

[
R̂k

T̂

]
≈

[
R̂k

Ṫ

]

=

[
Ûk 0
0 Ip

] [
Σ̂k 0

Ṫ V̂k ST
T

] [
V̂k QT

]T (6)

Then, we compute the rank-k SVD on the middle matrix,
i.e. [

Σ̂k 0

Ṫ V̂k ST
T

]
(k+p)×(k+p)

≈ U ′
k · Σ′

k · V ′T
k (7)

Since (k + p) is typically small, the computation of SVD
should be very fast. Same as [14], we compute the truncated
rank-k SVD of R̂′ instead of a complete one,

R̂′
k =

([
Ûk 0
0 Ip

]
· U ′

k

)
· Σ′

k · ([ V̂k QT

] · V ′
k

)T
(8)

In CF context, the value of all entries should be in a valid
range. For example, a valid value r in MovieLens should
be 0 < r � 5. Therefore, after obtaining the truncated new
matrix R̂′

k, a post-processing step is applied to it so that all
invalid values will be replaced with reasonable ones.

Δr̂′k,ij =

⎧⎨
⎩

validMinV alue if r̂′k,ij < validMinV alue

validMaxV alue if r̂′k,ij > validMaxV alue

r̂′k,ij otherwise
(9)

In (9), r̂′k,ij is the (i, j)-th entry of R̂′
k. validMinV alue

and validMaxV alue depend on particular dataset.
For MovieLens dataset, validMinV alue = 0 and
validMaxV alue = 5; for Jester dataset, validMinV alue
= -10 and validMaxV alue = 10. Eventually, the perturbed
and updated user-item rating matrix, ΔR̂′

k ∈ R
(m+p)×n

with Δr̂′k,ij as its entries, is generated.
In our scheme, we assume the third party owns R̂k so we

only send ΔT (ΔT = ΔR̂′
k(m+ 1 : m+ p, :) ∈ R

p×n)2 to
them.

2ΔR̂′
k(m+1 : m+p, :) is a Matlab notation that means the last p rows

of ΔR̂′
k

Algorithm 1 summarizes the SVD-based row/user updat-
ing.

Algorithm 1 Privacy Preserving Row Updating
Require:

Pre-computed rank-k SVD of R̂: Ûk, Σ̂k and V̂k;
Item mean of R̂: �rmean;
New data T ∈ R

p×n;
Ensure:

SVD for updated full matrix: Û ′
k,Σ

′
k and V̂ ′

k;
Perturbed new data: ΔT ;
Updated item mean vector: �r′mean;

1: Impute the missing values in T with formula (4) and
update item mean vector → T̂ , �r′mean;

2: Apply random noise X(X ∼ N(μ, σ)) to T̂ → Ṫ ;
3: Perform QR factorization on T̈ = (In− V̂k · V̂ T

k ) · ṪT →
QT · ST ;

4: Perform SVD on Σ̈ =

[
Σ̂k 0

Ṫ V̂k ST
T

]
→ Σ̈ ≈ U ′

k · Σ′
k ·

V ′T
k ;

5: Compute
([

Ûk 0
0 Ip

]
· U ′

k

)
→ Û ′

k

Compute
([

V̂k QT

] · V ′
k

) → V̂ ′
k

6: Compute the rank-k approximation of R̂′ → R̂′
k = Û ′

k ·
Σ′

k · V̂ ′T
k ;

7: Process the invalid values by formula (9) → ΔR̂′
k;

8: ΔR̂′
k(m+ 1 : m+ p, :) → ΔT ;

9: Return Û ′
k,Σ

′
k, V̂

′
k,ΔT and �r′mean.

B. Column/Item Updating

Column updating is similar with row updating, whereas
there are several differences between them. Note that we use
item mean to impute the missing values in raw user-item
rating matrix. In row updating, the mean values will change
when new rows/users are added while in column updating,
the mean values only depend on the new columns/items. With
this property, it is not necessary to keep an item mean vector
in column updating.

Like (5), we have the following task:[
R̂ F̂

] → R̂′′ (10)

Algorithm 2 depicts the SVD-based column/item updating.

Data owner should keep the updated SVD for new user-
item rating matrix (Û ′

k,Σ
′
k and V̂ ′

k for row updating, Û ′′
k ,Σ

′′
k

and V̂ ′′
k for column updating) and the perturbed new data

matrix (ΔT for row updating, ΔF for column updating).
Moreover, the updated item mean �r′mean is also supposed to
be held by data owner if a row updating has been performed.

As shown in both algorithms, three perturbation techniques
are combined together to preserve users’ privacy. Imputation
at the beginning removes all the missing values. Adding
random noise to the imputed data makes values different
from each other. Truncated SVD updating eliminates the
factors that are not so important to the data. This process
keeps the data utility and protects the data privacy at the
same time. Three techniques make contributions to privacy
preservation in different aspects. We will study the effect of
the proposed schemes in next section.
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Algorithm 2 Privacy Preserving Column Updating
Require:

Pre-computed rank-k SVD of R̂: Ûk, Σ̂k and V̂k;
New data F ∈ R

m×q;
Ensure:

SVD for updated full matrix: Û ′′
k ,Σ

′′
k and V̂ ′′

k ;
Perturbed new data: ΔF ;

1: Impute the missing values in F with corresponding item
mean values → F̂ ;

2: Apply random noise X(X ∼ N(μ, σ)) to F̂ → Ḟ ;
3: Perform QR factorization on F̈ = (Im− Ûk · ÛT

k ) · Ḟ →
QF · SF ;

4: Perform SVD on Σ̇ =

[
Σ̂k ÛT

k · Ḟ
0 RF

]
→ Σ̇ ≈ U ′′

k ·
Σ′′

k · V ′′T
k ;

5: Compute
([

Ûk QF

] · U ′′
k

) → Û ′′
k

Compute
([

V̂k 0
0 Iq

]
· V ′′

k

)
→ V̂ ′′

k

6: Compute the rank-k approximation of R̂′′ → R̂′′
k = Û ′′

k ·
Σ′′

k · V̂ ′′T
k ;

7: Process the invalid values like formula (9) (r̂′k,ij are now
entries in R̂′′

k) → ΔR̂′′
k ;

8: ΔR̂′′
k(:, n+ 1 : n+ q) → ΔF ;

9: Return Û ′′
k ,Σ

′′
k , V̂

′′
k and ΔF .

V. EXPERIMENTAL STUDY

In this section, we discuss the test dataset, prediction
model, evaluation strategy and experimental results with
discussion.

A. Data Description

As most research papers in collaborative filtering, we
adopt both MovieLens[2] and Jester[10] datasets as the
test data. The public MovieLens dataset has 3 subsets,
i.e., 100K(100,000 ratings), 1M(1,000,000 ratings) and
10M(10,000,000 ratings). We use the first subset to test the
algorithms. It has 943 users and 1,682 items. The 100,000
ratings, ranging from 1 to 5, were divided into two parts: the
training set(80,000 ratings) and the test set(20,000 ratings).
If we store both sets in matrices, they are expected to be very
sparse(with the sparsity of 93.7% in the training matrix).

The Jester datasets are from a web-based joke recom-
mendation system, which is developed by the University of
California, Berkeley[10]. There are also 3 subsets, namely
jester-data-1, jester-data-2 and jester-data-3. We take the
first set for test. It has 24,983 users and 100 jokes with
1,810,455 ratings ranging from -10 to +10. We randomly
select 80% ratings as the training set and use the rest as test
set. Compared with MovieLens, the Jester dataset is not so
sparse (with the sparsity of 27.5% in the training matrix).

B. Prediction Model and Error Measurement

In our experiments, we build the prediction model by
SVD-based CF algorithm[2]. Since SVD cannot deal with
missing values, they are treated as zeros if we don’t do any
pre-processing. A typical way to impute missing values is
using item mean. For each column (corresponds to an item,
whereas a row corresponds to a user), the mean value is

calculated from existing ratings and all the missing values in
this column are filled by the mean value.

For a dense matrix A, its rank-k SVD is A ≈ Ũk · Σ̃k ·
Ṽ T
k . Compute the user factor matrix(UF ∈ R

m×k) and item
factor matrix(IF ∈ R

n×k):

UF = Ũk ·
√

Σ̃k, IF = Ṽk ·
√

Σ̃k (11)

The predicted rating for user i left on item j is computed
by taking the inner product of the i-th row of UF and the
j-th row of IF :

p′ij = (Ũk ·
√

Σ̃k)i · (Ṽk ·
√

Σ̃k)
T
j (12)

To ensure the predicted rating is in the valid range, the
same boundary check like (9) is applied:

pij =

⎧⎨
⎩

validMinV alue if p′ij < validMinV alue
validMaxV alue if p′ij > validMaxV alue

p′ij otherwise
(13)

When testing the prediction accuracy, we first use the
training set to obtain user factor matrix UF and item
factor matrix IF ; then for every rating in the test set, we
compute the corresponding predicted value and measure the
difference. We do this for all the ratings in test set and thus
the MAE(mean absolute error)[15], [16] is calculated:

MAE =
1

|TestSet|
∑

rij∈TestSet

|rij − pij | (14)

In this paper, MAE is the measurement criterion of predic-
tion accuracy. The lower the value is, the higher the accuracy
we get.

C. Privacy Measurement

When we measure the privacy, we mean to what extent
the original data could be estimated if given the perturbed
data. In this paper, the privacy measure based on differential
entropy is adopted. This privacy measure was firstly proposed
by Agrawal and Aggarwal[17] and was applied to measure
the privacy loss in collaborative filtering by Polat and Du[4].

In [17], they proposed Π(Y ) = 2h(Y ) as the privacy
inherent in a random variable Y with h(Y ) as its differential
entropy. Thus given a perturbed version of Y , denoted by X ,
the average conditional privacy(also referred to as Privacy
Level) of Y given X is Π(Y |X) = 2h(Y |X). They also
proposed the conditional privacy loss of Y after revealing
X as:

P(Y |X) = 1−Π(Y |X)/Π(Y ) = 1− 2h(Y |X)/2h(Y ) (15)

Similar with Polat and Du’s work, we take Π(Y |X) and
P(Y |X) as privacy measure to quantify the privacy in the
experiments.

D. Evaluation Strategy

We would like to test our scheme in several aspects: the
prediction accuracy in recommendation, the privacy protec-
tion level, how to split the new data in updating, when to
recompute SVD, and randomization degree with its effect in
perturbation, etc.

To test when to recompute SVD, data in training set, which
is viewed as a rating matrix, is split into two sub sections with
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a particular ratio ρ1. The first ρ1 data is assumed to be held
by the third party; the remaining data will be updated into it.
For instance, when a row split is performed with ρ1 = 40%,
the first 40% rows in training set is treated as R in (1). An
imputation process should be done on this data without the
knowledge from the remaining 60% data, yielding R̂ in (5).
Then a rank-k SVD and the item mean vector are computed
on this matrix. We call the rank-k approximation of R̂ the
starting matrix. These data structures are utilized as the input
of Algorithm 1. Results are expected to be different with
varying split ratio in the training data. If the result is too
far from the predefined threshold or the results change much
faster at some point, a re-computation should be performed.

However, we don’t update the remaining 60% rows in
training set in one round since data in real world application
grows in small amount compared with the existing one.
In our updating experiment, the 60% rows are repetitively
added to the starting matrix in several times, depending on
another split ratio, say ρ2, of the new data. For example,
if ρ2 = 1/10, the new data will be added to the starting
matrix in 10 rounds. The final matrix (starting matrix +
ΔT1 + · · ·+ΔT10) is the perturbed and updated matrix.

We evaluate the algorithms on both MovieLens and Jester
datasets by testing the time cost of updating, prediction error
and privacy measure on the final matrix.

E. Results and Discussion

1) Truncation Rank(k) in SVD: Due to the characteristic
of SVD-based CF, the rank of the truncated matrix, i.e., k
must be chosen in advance. Most papers report that k = 13
is an optimal choice for MovieLens dataset and k = 11
for Jester dataset. We verified this by probing k in {2, 5,
. . . , 25, 50, 100} and computing the corresponding MAE
numbers[2]. The results on MovieLens are shown in Figure
1. Note that this experiment has nothing to do with updating
since we performed the SVD-based prediction on the full
imputed training data.
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Fig. 1. MAE variation with different rank-k

The curve shows the mean absolute errors with different
k’s and the lowest MAE(0.7769) is reached when k = 13.
Same experiment on Jester also confirms that the lowest
MAE(3.2871) is reached when k = 11. Accordingly, we
used 13 and 11 as the truncation rank for MovieLens and
Jester datasets, respectively, in the following experiments.

2) Split Ratio ρ2: We start from the split ratio(ρ2) of new
data. We fix ρ1 at 40% meaning the first 40% data in training
set is treated as starting matrix, while the remaining 60%

will be added to it. ρ2 is set to 1/10, 1/9, 1/8, . . . ,1/2, 1. The
greater ρ2 is, the fewer rounds are needed in updating.
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Fig. 2. Time cost variation with split ratio ρ2

Figure 2 illustrates the time cost with different split
ratio ρ2. We use “Row” to represent the row updating and
“Column” to refer to column updating. Note that we set
μ = 0 and σ = 0 to eliminate randomization effect in both
algorithms. We will report the results with randomization in
Section V-E4.

The curves of MovieLens data are generally in ascending
trend with rising split ratio and the row updating takes
longer time than column updating. In Jester data, the column
updating reaches the shortest time when ρ2 = 1/3 and the
row updating takes less time than column updating. It is clear
that except for column updating in Jester data, updating new
data in more rounds with less data in each round can decrease
the time cost. However, the split ratio cannot simply be
determined only based on this factor. The prediction accuracy
and privacy protection level should play even more crucial
role during this process.

Furthermore, the figure indicates the relation between the
time cost of row and column updating - it depends on
dimensionality of row and column. For example, the Movie-
Lens data has more columns(1,682 items) than rows(943
users) while the Jester data has much fewer columns(100
items) than rows(24,983 users). We observed each step of
both row and column updating algorithms and found that,
when the number of columns is greater than the number
of rows, steps 1 and 3 in Algorithm 1 need more time
than that in Algorithm 2 due to higher dimensionality and
vice versa. Nevertheless, compared with the time cost for
imputing and computing SVD on raw training set(we run all
the experiments on the same machine), which is 44.9744(im-
putation) + 2.2866(SVD) = 47.261s for MovieLens and
1592.8075(imputation) + 3.7552(SVD) = 1596.5627s for
Jester, our scheme run much faster in both row and column
updating.
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Fig. 3. MAE variation with split ratio ρ2

The mean average error charted in Figure 3 keeps stable
with different split ratio ρ2 which implies the quality of
the updated data with respect to prediction accuracy is not
affected so much by ρ2. We also got similar results on privacy
measure, see Figure 4.
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Fig. 4. Privacy level variation with split ratio ρ2

Based on the experimental results of split ratio ρ2 study,
we use ρ2 = 1/9 in both row and column updating for
MovieLens data in the following experiments. The Jester data
will work with ρ2 = 1/10 in row updating and ρ2 = 1/3 in
column updating.

3) Split Ratio ρ1: Owing to the inherent property of SVD
updating algorithms, errors are generated in each run. The

data owner should be aware of the suitable time to recompute
SVD for whole data so that the quality of the data can be
kept. We study this problem by experimenting with the split
ratio ρ1.

The time cost for updating new data with varying ρ1
is plotted in Figure 5. It is expected that updating fewer
rows/columns takes less time. While different types of split
ratio were tested, the relation between time cost of row and
column updating did not change.
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Fig. 5. Time cost variation with split ratio ρ1

Figure 6 shows the mean average error. The curve in
MovieLens data has a descending trend in row updating
but keeps at a stable level in column updating. The case is
different for Jester data where MAE is basically decreasing
for column updating and keep stable for row updating with
rising split ratio ρ1. It indicates that with fewer ratings in the
starting matrix, the prediction model depreciates in profiling
users’ preferences and thus leads to a lower prediction accu-
racy. As for the question “what affects MAE more, row(user)
or column(item)?”, it also depends on the dimensions of row
and column. Since the total amount of information stored in a
rating matrix is fixed, suppose every matrix entry contributes
the same amount of information as others, the fewer users(or
items) we have, the more information each user(or item)
contributes. In MovieLens data, the row dimension is lower
than the column dimension. In this scenario, users play more
important role than item because there are fewer users than
items and each user contributes more than each item does.
Therefore, with the increasing number of users, MAE drops.
On the other hand, in Jester data, row has a higher dimension
than item so items are more critical and have greater effect
on errors. Compared with the MAE of unperturbed training
matrix, which are 0.7769(MovieLens) and 3.2871(Jester), our
updating schemes get 0.7951(row updating), 0.7768(column
updating) for MovieLens data and 3.2870(row updating),
3.3221(column updating) for Jester data when ρ = 40%,
respectively. The MAEs are still as good as the published
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results. If using better prediction model, we believe the MAE
could be lower.
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Fig. 7. Privacy level variation with split ratio ρ1

The privacy level with varying split ratio is displayed in
Figure 7. It is clear that privacy level decreases with more
data held in the starting matrix. As explained in the previous
paragraphs, more data, especially more users in MovieLens
or items in Jester, will make greater contribution to model
construction that leaks more privacy. In this experiment, the
privacy levels on both datasets are higher and change faster in
row updating than that in column updating. The results imply
that privacy with respect to users(rows) plays a dominant

role in the whole process other than item privacy. This does
make sense because when we talk about the privacy, we mean
users’ privacy not item.
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Fig. 8. Privacy loss variation with split ratio ρ1

Corresponding to privacy level, the privacy loss of raw
training data (Y ) after revealing the perturbed and updated
data (X) is presented in Figure 8.

With growing split ratio, privacy loss increases where
privacy level decreases. The curve looks like the upside-down
version in Figure 7 due to the relation between them, see
(15).

Now we can decide when to recompute SVD for the whole
data according to Figure 6 and Figure 7. Since MAEs on
both datasets drop more slowly after ρ1 ≥ 50% and there is
no apparent variation of the slope for privacy measure curves,
the re-computation can be performed when ρ1 reaches 50%.

4) Role of Randomization in Data Updating: So far,
we have not applied randomization technique to our data
updating scheme. In this section, we study the role of
randomization(Gaussian noise with μ and σ as its parameters
in Algorithms 1 and 2) in both data quality and privacy
preservation. In the following experiments, ρ1 is fixed to
40% and ρ2 is set to 1/9. We probe μ in {0, 1} and σ in
{0.1, 1} for both datasets. Table I collects the statistics of
the test.

In this table, row and column updating with randomization
is compared with the non-randomized version. As can be
seen, after applying random noise to new data before up-
dating it, both privacy metrics (Π(Y |X) and P(Y |X)) in all
cases improve to a certain extent. Nevertheless, we lost some
utility of the data which results in greater MAEs at the same
time. Hence, the parameters should be carefully chosen to
deal with the trade-off between data utility and data privacy.
Moreover, the results indicate that the expectation μ affects
the results more than the standard deviation σ. We suggest
data owner decide μ first and then tweak σ.

As a summary, randomization technique can be used as
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TABLE I
RANDOMIZATION IN DATA UPDATING

MovieLens Data Jester Data
Row Updating Column Updating Row Updating Column Updating

μ σ MAE Π(Y |X) P(Y |X) MAE Π(Y |X) P(Y |X) MAE Π(Y |X) P(Y |X) MAE Π(Y |X) P(Y |X)
0 0 0.7951 1.2671 0.0364 0.7768 1.2124 0.0780 3.2870 5.2894 0.4656 3.3221 4.7178 0.5233
0 0.1 0.7955 1.2792 0.0272 0.7781 1.2558 0.0450 3.2872 5.4717 0.4472 3.3390 4.9811 0.4967
0 1 0.8331 1.2927 0.0169 0.8219 1.2869 0.0214 3.3007 6.4436 0.3490 3.3542 6.1920 0.3744
1 0.1 1.0764 1.2808 0.0260 0.9837 1.2583 0.0431 3.3221 5.4706 0.4473 3.3629 5.0179 0.4930
1 1 1.0421 1.2926 0.0170 0.9258 1.2839 0.0236 3.3358 6.4410 0.3492 3.3799 6.2577 0.3678

an auxiliary step in SVD-based data updating scheme to
provide better privacy protection. It brings in randomness
that perturbs the data before SVD updating. Therefore, data
will be perturbed twice(randomization + SVD) in addition
to imputation during the updating process and thus can
achieve a higher privacy level. However, with the latent
factors captured by SVD, most critical information can be
retained which ensures the data quality for recommendation.

VI. CONCLUSION AND FUTURE WORK

Collaborative filtering is a powerful technique in rec-
ommender systems that recommend products to customers.
However, many online merchants do not build such systems
by themselves. Instead, they buy services from a third party
to help them do it. Protecting users’ privacy is one of
the primary concerns in data sharing. Furthermore, data is
growing in every second. How to update the new data into
the existing one efficiently with privacy preservation is an
inevitable issue in this case. To our best knowledge, there’s
little work focused on it.

In this paper, we present a privacy preserving data updating
scheme for collaborative filtering purpose. It is an SVD-
updating based scheme with randomization technique and
could be utilized in updating incremental user-item matrix
and preserving the privacy at the same time. We try to protect
users’ privacy in three aspects, i.e., missing value imputation,
randomization-based perturbation and SVD truncation. The
experimental results on MovieLens and Jester datasets show
that our proposed scheme could update new data into the
existing(processed) data very fast. It can also provide high
quality data for accurate recommendation while keep the
privacy.

Future work will take into account users’ latent factor to
obtain a more reasonable imputation strategy in updating
the data. Other matrix factorization techniques, e.g., non-
negative matrix factorization, will be considered to explore
an alternative way of mining underlying data pattern so that
a possible better scheme can be provided.
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