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Abstract- Particle filters are an important class of online 

posterior density estimation algorithms. In this paper we 

propose a real coded genetic algorithm particle filter 

(RGAPF) for the dual estimation of stochastic volatility 

and parameters of a Heston type stochastic volatility 

model. We compare the performance of our hybrid 

particle filter with a parameter learning particle filter 

present in literature. Our algorithm out performs this 

algorithm for both the volatility and parameter 

estimation. 

Index Terms: particle filters, stochastic volatility models, 
recombination operators, genetic algorithms 

I. INTRODUCTION 
The famous Black-Scholes model [2] was the starting point 
of a new financial industry and has been a very important 
pillar of all option trading since. One of its core 
assumptions is that the volatility of the underlying asset is 
constant. It was realized early that one has to specify a 
dynamic on the volatility itself to get closer to the market 
behaviour. There are mainly two aspects making the fact 
apparent. Considering historical evolution of volatility by 
analysing time series data one observes erratic behaviour 
over time. Secondly, backing out implied volatility from 
daily traded plain vanilla options, the volatility changes 
with strike. The most common realisations of this 
phenomenon are the implied volatility smile or skew. The 
natural question arises how to extend the Black-Scholes 
model appropriately. [9] 

The variance-gamma model reflects this with its ‘g’ 
parameter. Low values of ‘g’ correspond to a low arrival 
rate for information and a low volatility; high values of ‘g’ 
correspond to a high arrival rate for information and a high 
volatility. 
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An alternative to the variance-gamma model is a model 
where the process followed by the volatility variable is 
specified explicitly. Suppose first that we make the 
volatility parameter in the geometric Brownian motion a 
known function of time. The risk neutral process followed 
by the asset price is then: 

   (   )      ( )      (1) 

Where S is the price process, r is the drift, q is the dividend 
yield and σ(t) is the time varying volatility process.  

The Black-Scholes formulas are correct provided that the 
variance rate is set equal to the average variance rate during 
the life of the option. Equation (1) assumes that the 
instantaneous volatility of an asset is perfectly predictable. 
In practice volatility varies stochastically. This has led to 
the development of more complex models with two 
stochastic variables; the stock price and its volatility. 

The stochastic volatility estimation requires filtered 
estimates to account for estimation errors. Many authors 
have considered the problem of simulation based filtering 
with known parameters. A common approach is to use 
particle filtering methods, see for example Gordan, 
Salmond and Smith [7], Liu and Chen [10], and Pitt and 
Shepherd [12]. 

In 2001, Liu and West proposed a particle filtering 
algorithm for dual estimation of states and parameters. 
Their algorithm built upon the works of Gordon [5] in 
which be proposed the concept of ‘artificial evolution’. A 
brief discussion of ‘artificial evolution’ and the dual state 
and parameter estimation algorithm of Liu and West are 
also given in this paper. 

The similarities between evolutionary algorithms  and 
particle filters have been observed by many researchers [8]. 
In 2005, Patrigo, Sanchez, Gionikellis and Montemayor 
[13] combined particle filters with population based meta 
heuristics for visual articulated motion tracking. Uosaki and 
Hatanaka [15] proposed their evolution strategies particle 
filter (ESP) in 2007, and applied it to a fault detection 
algorithm with favourable results. In their algorithm, they 
added an evolution strategies layer into a generic particle 
filter.  In 2011, a general frame work for applying 
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population based meta heuristics to particle filters was 
proposed by Patrigo [13].  

In this paper we propose a real coded genetic algorithm 
particle filter (RGAPF) for the dual estimation of volatility 
and parameters. We apply our particle filtering algorithm on 
an Euler discretization of the Heston model. The 
performance of our algorithm is compared with the 
performance of the state and parameter estimation algorithm 
given by Liu and West in [11]. In order to quantify 
performance, we use the traditional measure of particle 
filter performance: The root mean square error (RMSE). 
This measure of performance has been used extensively in 
literature [1].  

A brief discussion of particle filters, evolutionary 
computation and the algorithm proposed by Liu and West is 
given in the following sections. 

II. STOCHASTIC VOLATILITY 
The Heston model to approximate the stochastic volatility is 
given by the following stochastic differential equation: 
  ( )  ( )⁄   √ ( )   ( )                         (2) 
  ( )    (   ( ))     √ ( )   ( )  (3) 

            
Where k,  , θ are strictly positive constants, and where    
and    are scalar Brownian motions in some probability 
measure; we assume that    ( )    ( )        Where 
the correlation ρ is some constant in [-1, 1]. X(t) represents 
an asset price process. 
The Euler discretization of the above stochastic differential 
equation is given by: 
   ̂ (    )      ̂ ( )  

 

 
  ̂( )   √ ̂( )   √    (4)   

 
 ̂(   )    ̂( )   (    ̂( ) )    √ ̂( )   √         (5) 
 
Where  ̂( )  is the observed price process, and  ̂( ), is the 
volatility process that has to be estimated.  
For a dual estimation process, the parameters k,  , θ will 
also be estimated on line along with the stochastic volatility. 
 

III. .PROBLEM FORMULATION 
To define the estimation problem, consider a dynamic 
system represented by the state sequence  
            where the  temporal evolution is provided by 
the state equation: 
 
     (         ),   (6) 
 
where ‘f’ is a nonlinear function and N is the set of natural 
numbers,           is the process noise sequence.  The 
state process is hidden, but we are provided with online 
measurements of the observation process that is given by 
the observation equation: 
 
                      (     )            (7) 

 
Where h is a non-linear function of     The objective is to 
recursively estimate    whenever we obtain a new 
measurement of   . At the same time, the parameters of f 
also need to be estimated recursively.  
In the stochastic volatility context, equation (2) gives the 
hidden state process while equation (3) gives the 
observation process. 

A. Bayesian Filtering 

Consider that we know apriori the state and the observation 
equations, i.e.       (     )  which can also be assumed 
to be sampled from         (     |  ), because of the 
random noise   . Similarly, the observation equation for his 
hidden process is    (     ). Which can assumed to be 
sampled form  (  |  ). The values generated by the state 
equation are hidden and we only have the observation 
values visible. 

The Bayesian solution to computing the posterior 
distribution  (  |    ) of the state vector given past 
observations is given by the general Bayesian update 
recursion: 

 (  |    )   
 (  |  ) (  |      )

 (  |      )
           (8)            

 (  |    )   ∫  (  |  ) (  |      )    (9)        
 (    |    )   ∫  (    |  ) (  |    )                     (10) 

      The above result is the cornerstone in non-linear 
Bayesian filtering. The first equation follows directly from 
Bayes law, and the other two follow from the law of total 
probability. The first equation corresponds to a 
measurement update, the second is normalization constant 
and the third corresponds to a time update [6]. 

B. Particle Filtering Equations 

A generic particle filter uses the above Bayesian 
measurement and time update equations to predict the 
posterior distribution function (pdf) [6]. The posterior 
distribution is estimated using N particles          . Each 
particle is a potential estimate of the state vector. The 
particles are assigned weights based on their relative fitness 
compared to each other. 

The Bayesian filtering equation in case of N particles of a 
particle filter are modified as follows: 

 (      
 |    )      (    

 |    
      ) (    

 |    ) 

               | 
  (    

 |  
 )         (11)                         

Hence: 

 (       |    )  ∑   | 
  (    

 |  
 ) (      

 ) 
          (12) 

Now consider the case where sampling from  (    |  ) is 
not computationally feasible, the concept of importance 
sampling is used. 
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 (      |    )   ∫ (    |  )  (  |    )    

  ∫  (    |  )
 (    |  )

 (    |  )
  (  |    )                                  

(13) 

Thus; 

  (    |    )   ∑
 (    

 |  
 )

 (    
 |  

 )
  | 

  (              
 ) 

            

(14) 

IV. EVOLUTIONARY ALGORITHMS 
Evolutionary algorithms are stochastic population based 
metaheuristics that have been successfully applied to many 
real and complex optimization problems [14]. Evolutionary 
algorithms are based on the notion of competition. They are 
based on the evolution of a population of individuals. An 
objective function associates a fitness value with every 
individual indicating its suitability to the problem. At each 
iteration using some selection procedure, individuals are 
selected and variation operators are applied that updates the 
population. The process is iterated until a stopping criterion 
is reached. 

A. Genetic algorithms 

Genetic algorithms have been developed by John Holland in 
the 1990s to understand the adaptive processes of natural 
systems [3]. They have been applied to optimization and 
machine learning in the 1980s [3]. Traditionally genetic 
algorithms use binary representation of the population of 
individuals. After selection, a crossover (recombination) 
and mutation operators are applied to the individuals for 
search space exploration. A generic template for a genetic 
algorithm is shown below: 

             Template of a Genetic algorithm 

 
 

 

 

 

 

 

 

 

 

B. Real coded genetic algorithm 

Genetic algorithms (GA) are a very popular class of 
evolutionary algorithms [3]. Traditionally GAs are 
associated with binary representation, where the population 
was coded into binary by using some coding mechanism.   

Real coded genetic algorithms do not use a coding scheme 
to code the population. The recombination and mutation 
operators are applied on the population directly. The theory 
of convergence of real coded genetic algorithms was given 
by Goldberg in [4].  

Many different types of real recombination operators are 
found in literature. We discuss the arithmetic recombination 
operators that we have used in our experiments. 

1) Arithmetic recombination 

The arithmetic recombination operator attempts to average 
the elements of the parent. Given two parents   and   , the 
arithmetic recombination operator creates an off spring o 
using the weighted average: 
         (   )      (15) 
 
Where    is the offspring created. 
 

2) Real Mutation operator 

In case of real coded genetic algorithms, the mutation 
operator can be viewed as a random perturbation or noise 
that is randomly added to a component making up the 
chromosome. In our experiments we used of the Gaussian 
mutation operator. 

The Gaussian mutation adds random perturbations, sampled 
from the distribution N(0,σ). Where σ is the standard 
deviation of the mutation operator [14]. 

V. DUAL STATE AND PARAMETER ESTIMATION. 
The need for more general algorithms that deal 
simultaneously with both fixed model parameters and state 
variable is especially pressing [11]. 

Gordon et al. in 1993 [5] introduced the idea of adding 
additional random disturbances or roughening penalties to 
sampled state vectors in an attempt to deal with sample 
degeneracy. Extending this idea to fixed model parameters 
leads to a synthetic method of generating new sample points 
for parameters. This ad-hoc idea is similar to using a 
Gaussian mutation in evolution strategies literature.  

Consider a parameter vector    in a model at time t. At time 
t+1 add an independent zero-mean normal increment to the 
parameter. 

That is: 

               

        (   ) 

Generate(P(0)); /* initial population */ 

t = 0; 

While not Termination_Criterion(P(t)) Do 

Evaluate(P(t)); 

P’(t) = Selection(P(t)); 

P’(t) = recombination(P’(t)); 

P’(t) = mutation(P’(t)); 

P(t + 1) = Replace(P(t), P’(t)); 

t = t + 1; 

End While and Output Best individual found 
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The key motivating idea is that the artificial evolution 
provides the mechanism for generating new parameter 
values at each time step. Liu and West proposed a kernel 
method with location shrinkage for this parameter 
estimation problem. The shrinkage pushes samples 
  

( )values towards their mean,  ̅  before adding a small 
degree of ‘noise’ implied by the normal kernel. 

Suppose  (       ) is the posterior distribution of the 
parameters. Then the parameter update is given by   
 (       )     ∑   

( )
 (    |  

( )
     )

 
    

Where,              
( )

    
( )

 (   ) ̅  

   √      

   is the variance and h is chosen as a slowly decreasing 
function on N. The pseudo code of the state and parameter 
learning algorithm follows: 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

For further details of the algorithm, refer to [11]. 

 

VI. REAL CODED GENETIC ALGORITHM PARTICLE FILTER 
(RGAPF) 

We propose a state and parameter estimating particle filter 
that has a real coded genetic algorithm (RGA) layer. The 
RGA layer replaces the resampling method in the particle 
filter. Park, Hwang, Rou and Kim in 2007 showed that a 
genetic algorithm layer can be used to solve the sample 
depletion problem. In our proposed algorithm the 
resampling method is replaced by the RGA layer. The 

importance weights assigned to a particle is a measure of its 
relative fitness in the particle population [6]. The assigned 
weight is used as a measure of the fitness landscape of the 
parameters. Genetic algorithms are stochastic optimization 
algorithms. In this scenario they provide us with an 
optimized estimate of the particles.  

In the genetic algorithm layer we use an arithmetic 
recombination operator and an annealed Gaussian mutation 
operator. The annealed Gaussian mutation is similar to the 
random perturbation that are used in artificial evolution, 
however the standard deviation   decays with time t. 

               

        (   ) 

The arithmetic recombination operator attempts to average 
the elements of the parent. Given two parents   and   , the 
arithmetic recombination operator creates an off spring o 
using the weighted average: 

         (   )   
                         

Where α is a constant, and     and     are particles that 
were selected for recombination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII. DESIGN OF EXPERIMENTS AND RESULTS 
We simulate a price process and a volatility process by 
using equations (4 - 5) using known parameters. The two 
algorithms are then tested on this volatility process for 

𝜇𝑡  
(𝑗)

 𝐸(𝑥𝑡  |𝑥𝑡
𝑗
 𝜃𝑡

(𝑗)
) 

𝜃𝑡  
(𝑘)

 𝑁(∙ |𝑚𝑡
(𝑘)

   𝑉𝑡) 

𝑝(∙ |𝑥𝑡
(𝑘)

 𝜃𝑡  
(𝑘)

)  

𝑤𝑡  
(𝑡)

∝  
𝑝(𝑦𝑡  |𝑥𝑡  

(𝑡)
 𝜃𝑡  

𝑘 )

𝑝(𝑦𝑡  |𝜇𝑡  
(𝑘)

 𝑚𝑡
(𝑘)

)
 

1. For each j = 1, …N, identify the prior point 
estimates of (𝑥𝑡  𝜃) given by (𝜇𝑡  

(𝑗)
 𝑚𝑡

(𝑗)) where 

may be computed from the state evolution 
density and   𝑚𝑡

(𝑗)
 𝑎𝜃𝑡

(𝑗)
 (  𝑎)�̅�𝑡  is the 

kernel location. 
2. Sample a new parameter vector 𝜃𝑡  

(𝑘)  from the 
normal component of kernel density, namely 

3. Sample a value of the current state vector 𝑥𝑡  
(𝑘)  

from the system equation 

4. Evaluate a corresponding weight  

5. Repeat steps (2) – (4) a large number of times to 
produce a final posterior approximation 
(𝑥𝑡  

(𝑘)
 𝜃𝑡  

(𝑘)
) with weights 𝑤𝑡  

(𝑘) , as required. 

 

Choose a proposal distribution 𝑞(𝑥𝑘  
𝑖 |𝑥𝑘

𝑖  𝑦𝑘  ), 
resampling strategy and the number of particles N. The 
pseudo code of our proposed algorithm is given below.  
Initialization: Generate 𝑥 

𝑖 𝑝𝑥𝑜  𝑖    …  𝑁 and let initial 
weights to be 1/N.  
For loop k = 1, 2…end of observations. 

Start: 

1. Measurement and Time Update: For i = 1,2,…, N 
𝑤𝑘|𝑘
𝑖   

 

𝑐𝑘
𝑤𝑘|𝑘  
𝑖 𝑝(𝑦𝑘|𝑥𝑘

𝑖 )                
               Where the normalization weight is given by: 

𝑐𝑘   ∑ 𝑤𝑘|𝑘  
𝑖𝑁

𝑖  𝑝(𝑦𝑘|𝑥𝑘
𝑖 )                     

2.  Estimation: 
The filtering density is approximated by 
𝑝(𝑥  𝑘|𝑦  𝑘)   ∑ 𝑤𝑘|𝑘

𝑖𝑁
𝑖  𝛿(𝑥  𝑘    𝑥  𝑘  

𝑖 )     
Apply Recombination & Mutation: 

             
3. IF (𝑦𝑘  is not last observation) 

k = k + 1 

Go to step 1. 
Else End For loop. 
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comparison. The Euler discretization of the Heston 
stochastic volatility model is given in equation 4-5. 

Where  ̂( )  is the observed price process, and  ̂( ) is the 
volatility process that has to be estimated. We simulate a 
volatility and prices process by setting the parameters equal 
to: 

              

         

The two algorithms mentioned in this paper are then run 50 
times on the simulated prices process, and the average 
RMSE of the 50 runs is calculated. 

The algorithms estimate the volatility process and at the 
same time learn the static parameters of the state equation.   

We calculate the average of the root mean square error 
(RMSE) as our performance measure of the volatility 
estimation. The reason for using RMSE as a performance 
measure is given in [1]. 

Particle Filter  Root Mean Square Error 
PLA (Particle Learning 
Algorithm) 

0.0328 

RGAPF 0.0074 
 

Graphically, for a single run, the estimation results obtained 
from running these two algorithms are shown below: 

 

                      Figure 1. Volatility estimation 

In the above figure, the RGAPF estimate (black line) and 
the actual volatility (blue line) lie close together in 
comparison to the PLA estimate (red line). The estimation 
of parameters with time are shown in the next graphs. 

 

                          Figure 2. Estimation of ‘k’  
 
 

 

Figure 3. Estimation of ‘θ’ 

 

Figure 4. Estimation of ‘ ’ 

 

VIII. CONCLUSION 
Our algorithm has performed significantly better at 
estimating both the stochastic volatility and the static 
parameters of the model. Figures 2-4 show the estimation of 
the static parameters. The plots show that the RGAPF 
converge to the actual values of the parameters after only a 
few iterations, and compared to the algorithm due to Liu 
and West, the estimate is closer to the actual value. The 
parameter learning algorithm of Liu and West can be seen 
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as using an annealed mutation operator, i.e. a Gaussian 
mutation, where the standard deviation of the perturbation 
decays with time. In RGAPF, along with a decaying 
(annealed) mutation, we have also added a recombination 
operator. The importance of the recombination operator in a 
genetic algorithm framework has been mentioned by many 
researchers [3]. In the real coded set up, most notably [4] 
has commented on the added search space exploration 
capability that recombination operators bring in an 
optimization problem. We can conclude that the 
recombination operator may be responsible for the 
improved performance of the particle filter.  

For future experiments, other recombination operators apart 
from arithmetic recombination should be tried to establish 
which recombination operator leads to the best possible 
performance. 
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