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Abstract—The theory of the thickness vibrator piezoelectric 
transducer is developed on the basis of the one dimensional 
Rayleigh-Love and Bishop models of longitudinal vibrations of 
rods. In the frames of this theory the lateral displacements are 
proportional to the product of the longitudinal strain, Poisson 
ratio, and the distance from the neutral line of the symmetric 
cross-section of the waveguide. The Hamilton variational 
principle is used for derivation of the equation of motion and 
for obtaining of the mechanical and electric boundary 
conditions. The electric impedance of the piezoelectric 
transducer is calculated. 

 
Index Terms—piezoelectric, Rayleigh and Bishop equation, 

vibration of thick rod. 

I. INTRODUCTION 

HE piezoelectric transducers generate and detect 
ultrasonic waves in continuous media such as fluids, 

solids, etc [1]. They have been developed for many 
industrial applications. In South Africa the transducers are 
manufactured by different companies for example, for 
navigation functions, and railroad inspection (CSIR), and 
ultrasonic level instruments (K-TEK), etc. The conventional 
theory of the thickness vibrator transducer is based on an 
assumption that its lateral vibrations are negligible. In this 
case the transducers’ dynamics could be described in terms 
of the one-dimensional wave equation and a set of 
mechanical and electric boundary conditions. However, the 
main assumption of the model is only valid in the case of 
long and relatively thin rods. As a rule, the linear 
dimensions of thickness vibrators are comparable with the 
characteristic dimensions of their cross-sections and hence, 
it is necessary to take into consideration the lateral 
displacements of these transducers. In the present paper the 
theory of the thickness vibrator transducer is developed on 
the basis of the Rayleigh-Love [2], [3] and Bishop [4], [5] 
models of longitudinal vibrations of rods. In the frame of 
this theory it is supposed that the lateral displacements are 
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proportional to the product of the longitudinal strain, 
Poisson ratio, and the distance from the neutral line of the 
transducers’ cross-section. For proper application of this 
model an equivalent Poisson ratio, of the transversely 
isotropic piezoelectric material, is calculated from the 
principle of minimum strain energy. The Hamilton 
variational principle is used for derivation of the equation of 
motion and for obtaining the mechanical and electric 
boundary conditions. On the basis of the obtained Rayleigh-
Love and Bishop models the electric impedance of the 
thickness vibrator is calculated. Possible generalizations of 
the proposed approach are considered and conclusions are 
formulated. The main theoretical results of the proposed 
paper are: formulation of a convenient method of equivalent 
Poisson ratio calculation by means of the minimum of the 
strain energy and use of the Hamilton variational principle 
to obtain the equations of motion of the Rayleigh-Love and 
Bishop models of a thickness vibrator transducer, and its 
mechanical and electric boundary conditions. The formalism 
explained in the present article could be used for analysis of 
N-stepped structures [6] with piezoelectric members. 

II. THEORY OF THICKNESS VIBRATOR BASED ON 

RAYLEIGH-LOVE AND BISHOP MODEL 

Suppose that  03Oz - axis of polarization of a 

piezoelectric rod. According to the Rayleigh-Love and 

Bishop theories displacements in  01Ox ,  02Oy , 

Oz - directions are correspondingly , ,u v  and w : 

 
 
 

, ,

, ,

,

u u x z t xw

v v y z t yw

w w z t





   

   
 

            (1) 

where prime means partial differentiation with regards to 
z ,  - Poisson ratio and x , y - displacements from the 

neutral axis of any symmetric cross0section of the bar. For 
isotropic materials   are normally known. For piezoelectric 

materials, operating in the regime of thickness vibrator, it 
could be found from the principle of the strain energy 
minimum that 
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- equivalent Poisson ratio, where D

ijc - elastic 

constants at constant electric charge density [5]. 
Linear stress-strain relations are: 
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Where strains: 1 2S S w    , 3S w , 4S yw   , 

5S xw   , 6 0S  , are calculated.from (1) electric 

displacements 1 2 0D D  , 3 30
i tD D e  , where 

30D const , and 2 f   is the frequency of 

excitation 
Expression for kinetic energy: 

2 2

02

l

pK Aw I w dz
                     (3) 

is used in both Rayleigh-Love and Bishop theories, where 
l - thickness of the transducer 

Strain energy is as follows: 
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where A - cross-section area of the transducer. In the 
Rayleigh-Love theory shear strains and stresses are 

neglected ( 4 5 0S S   and hence, 4 5 0T T  ) , but in 

the Bishop theory it is supposed that 4 50, 0S S  . 

Electric energy is: 
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It is also necessary to keep in mind the following electric 
boundary condition: 

 3

0

l

E dz V V t                    (6) 

where   0
i tV t V e   0V const - excitation voltage 

applied to the thickness vibrator. 
Lagrangian of the system: 
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Where    2
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piezoelectric constant. Lagrangian (7) characterizes the 
Bishop model. In the Rayleigh-Love model it is necessary to 

neglect term 2 2
44
D

pc I w  and hence, suppress w - 

dependence in the Lagrangian. 
Variation of the Lagrangian for the Bishop model: 
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For the Rayleigh-Love model terms with 
w




 are absent. 

Hence, the equation of motion in a general form for the 
Bishop model is: 
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For the Rayleigh-Love model term 
2 2
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d
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 is 

excluded. In the explicit form Eq.(9) is as follows (see [4]): 
2 2 0IV

p pAw EAw I w G I w             (9a) 

In the Rayleigh-Love [7] model term 2 IV
pG I w  is absent 

The boundary conditions in the general form for the 
Rayleigh-Bishop model are: 

  0,
0

x l
w


 - for fixed ends and  

 

 

0

0
0

0

x

x l

L d

w w dt w

L d

w l w dt w





               


                





 for free ends. 

For the Bishop model the boundary conditions are: 
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for free ends. 
It is also necessary to keep in mind the electric boundary 

condition: 0
L







. 

Let us give an explicit form of the free ends boundary 
conditions for the Bishop case of the thickness vibrator: 
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                        (10) 
Hence, we have six boundary conditions. For the 

Rayleigh-Love case corresponding boundary conditions are: 
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Hence, in this case we have three boundary conditions. 
 Solution of the Sturm-Liouville problem corresponding to 
(9a) equation in the Bishop case is 
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In the Rayleigh-Love case with the term 2 IV
pG I w is 

absent. 
Longitudinal displacement of the waveguide is  
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Current through the thickness vibrator is calculated  

  3 3I AD i A D                (16) 

Electric impedance is calculated as follows: 
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III. EXAMPLE 

Let us consider a thickness vibrator made from PZT-4 
VernitronCo piezoceramic. Its radius 25a mm  and 

length 25l mm , hence its area of cross-section is 
2 219.63A a mm   and moment of inertia 

4
461.36

2p

a
I mm


  . 

Graphs of wave numbers versus frequency in the Bishop 
case is shown in Fig 1. 
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Fig. 1. Graphs of wave numbers versus frequency 

Graph of phase velocity versus frequency is shown in Fig 2 
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Fig. 2. Graphs of phase velocity versus frequency 

 
Graph of electric impedance versus frequency is shown in  
Fig 3 
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Fig.3. Graph of electric impedance (in logarithmic scale) 

versus frequency. 
 

IV. CONCLUSION 

Theories of thickness vibrator transducer are formulated on 
the basis of two main models of longitudinally vibrating 
bars, Rayleigh-Love and Bishop, which take into 
consideration the lateral effects. 
For formulation of the theories the variational approach is 
systematically used and mechanical and electrical boundary 
conditions are obtained. 
Electric impedance is calculated as function of excitation 
frequency. 
Numerical example of practical calculation of the main 
properties of the piezoelectric transducer is considered. 
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