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Abstract: Elliptic curve cryptosystems are more efficient and 
secure than the conventional cryptosystems like RSA 
cryptosystems. We develop a Secret Key in the EKR Modified 
Montgomery Inversion Algorithm to avoid leaks the value of 
function f in Almost Montgomery Inversion Algorithm. The 
attacker can not guess the Secret key (t) to retrieve the valuable 
information in smart cards and mobile devices. We want to 
develop the new cryptosystem based on EKR Modified 
Montgomery Inversion Algorithm to resistance against Simple 
Power Analysis Attacks in Side- channel Attacks in Elliptic 
Curve Cryptosystems like RSA Cryptosystems. 
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I. INTRODUCTION 

Applications of healthcare, financial services and 
government depend on the underlying security already 
available in the wired computing environment. Both for 
secure (authenticated, private) Web transactions and for 
secure (signed, encrypted) messaging, a full and efficient 
public key infrastructure is needed. Three basic choices for 
public key systems are available for these applications: 

 RSA 
 Diffe-Hellman (DH) or Digital Signature 

 Algorithm (DSA) modulo a prime p 

 Elliptic Curve Diffie-Hellman         

 Signature Algorithm (ECDSA) 

The RSA is a system that was published in 1978 by Rivest, 
Shamir, and Adleman, based on the difficulty of factoring 
large integers. 

II. ELLIPTIC CURVE CRYPTOSYSTEMS 

Let K be a finite field and E be an elliptic curve (EC) over K 
defined by the following Weierstrassform equation       

   E: y2+a1xy+a 3 y= x3+ a2 x
2+a4 x + a6     (1) 

Where a i K and  ≠ 0, where   is the discriminant of E  
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Let L be an extension field of K. Then E (L) denotes the set 
of L-rational points (x, y) on E, where (x, y)   L × L and 
satisfy (1), together with the point at infinity ∂. 

The addition of two points on the curve is performed using a 
chord-and-tangent rule the set E (L) with the addition 
operation form an abelian group, where ∂ is the identity. 

 We denote the field inversion by I, the multiplication by M, 
the squaring by S. The point addition is denoted by A. When 
the two operands of the addition are the same point, the 
operation is referred to as point doubling and is denoted  
by D. 

A. Elliptic curves over prime fields 

 If K = F p , where p > 3 is a prime, (1) can be simplified to 

           E: y2   =   x3 + ax +b                                   (2)  

Where a and b  F p , The discriminant of this curve is  = 

−16 (4a3+27b2). The negative of a point P = (x, y) is −P = 
(x, −y) such that P + (−P) = ∂.This simplification is 
generally applicable when the characteristic of K is not 2  
or 3. 

Standard (homogeneous) projective coordinates (P); the 
projective point  (X Y: Z), Z ≠ 0, corresponds to the affine 
point (X/Z, Y/Z), ∂  corresponds to  (0 : 1 : 0) and the 
negative of (X : Y : Z) is (X : −Y : Z).  Jacobian projective 

coordinates (J ); the projective point (X : Y : Z), Z 6  = 0, 

corresponds to the affine point (X/Z 2 , Y/Z 3 ), O 

corresponds to   (0: 1 : 0) and  the   negative of (X: Y: Z) is 
(X: −Y : Z). Chudnovsky coordinates (C); the Jacobian 

point (X: Y: Z) is represented as(X:  Y: Z: Z 2  : Z 3 ). 

B. Elliptic curves over binary fields 

     If K = F m2 , (3.1) can be simplified to 

   E:y 2 =x 3 +ax+ b,                                              (3) 

Where a and b   F m2 . The discriminant of this curve is 

  = b and the negative of a point P = (x, y) is −P = (x, x + 
y). Such a curve is known as non-super singular. 

C .Elliptic Curve Scalar Multiplication (ECSM) 

Scalar multiplication in the group of points of an elliptic 
curve is analogous to exponentiation in the multiplicative 
group of integers modulo a fixed integer. Thus, it is the 
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fundamental operation in EC-based cryptographic systems. 
The scalar multiplication, [9] denoted kP, is the result of 
adding the point P to itself k times, where k is a positive 
integer, that is kP = P + P + · · · + P | {z} k copies and −kP 
= k (−P). u is said to be the order of P if u is the smallest 
integer. 

Let (k 1n , k 2n , . . . , k 1 , k
0

) 2  be the binary representation 

of k, i.e., k i    {0, 1} for 0  ≤ i < n − 1. 

 Thus,    

         kP = (




1

0

n

i

k i 2 i ) P = 2(2(· · · 2(2(k 1n  P) + k 2n P)  

                                               + · · ·)  + k 1 P) + k 0 P       

               = (k 1n 2 1n P) +k 1 2P)+ (k 0 P)                           (.4) 

Hence, kP can be computed using the straightforward 
double-and-add approach in n iterations. These algorithms 
are analogous to the square-and-multiply algorithm 
employed in exponentiation-based cryptosystems.  

III. WINDOW METHODS 

This method is sometimes referred to as m-ary method. 
What is common among them is that, if the window width is 

w, some multiples of the point P up to (2 w  − 1) P are 
precomputed and stored and k is processed w bits at a time. 

k is recoded to the radix2 w . k can be recoded in a way so 
that the average density of the nonzero digits in the recoding 
is 1/(w +  ), where   0    2 depends on the algorithm. 

Let the number of precomputed points be t, in the 
precomputation stage, each point requires either a doubling 
or an addition to be computed also depending on the 
algorithm.   

This ECSM method is suitable for unknown or 

fixed point P. The cost is Storage: t points, where 2 2w   ≤ t 

≤2 1w   depending on the algorithm. 

 Precomputation: t point operations (A or D). 

 Expected running time: (n − 1) D + n
w

n
 A, where 

0≤ 2  depending on the algorithm. 

IV. POWER AND ELECTROMAGNETIC ANALYSIS 
ATTACKS ON ECCS 

The attacks are those that monitor the power consumption 
and [2], or the electromagnetic emanations of a device, e.g., 
a smart card or a handheld device, and can infer important 
information about the instructions being executed or the 
operands being manipulated at a specific instant of interest. 
These attacks are broadly divided into two categories; 
simple and differential analysis attacks. We will refer to the 
former category as SPA attacks and the latter as DPA 
attacks. Though SPA and DPA are the acronyms for simple 
power analysis and differential power analysis.  

 

Power analysis attacks use the fact that the instantaneous 
power consumption of a hardware device is related to the 
instantaneous computed instructions and the manipulated 
data. The attacker could measure the power consumption 
during the execution of a cryptographic algorithm, store the 
waveform using a digital oscilloscope and process the 
information to learn the secret key. Kocher et al., in [4], first 
introduced this type of attack on smart cards performing the 
DES operation. Then Messerges et al. [10] augmented 
Kocher’s work by providing further analysis and detailed 
examples of actual attacks they mounted on smart cards. 

In general, SPA attacks are those based on retrieving 
valuable information about the secret key from a single 
leaked information power consumption or electromagnetic 
emanation trace. On the other hand, DPA attacks generally 
include all attacks that require more than one such trace 
along with some statistical analysis tools to extract the 
implicit information from those traces. 

A. SPA Attack on ECCs and its Countermeasures 

Coron [3] has transferred the power analysis attacks to 
ECCs and has shown that an unaware implementation of EC 
operations can easily be exploited to mount an SPA attacks.  
Window methods process the key on a digit (window) level. 
The basic version of this method, that is where  = 0 is 

inherently uniform since in most iterations, w D operations 
are followed by 1 A, except for possibly when the digit is 0. 
Therefore, fixed-sequence window methods were proposed 
[12], [11] and [10] in order to recode the digits of the key 
such that the digit set does not include 0. 

B.DPA Attack on ECCs and its Countermeasures 

  Whether relation between the instructions executed by a 
cryptographic algorithm and the key bits is not directly 
observable from the power signal, an attacker can apply 
differential power analysis (DPA). DPA attacks are in 
general more threatening and more powerful than SPA 
attacks because the attacker does not need to know as many 
details about how the algorithm was implemented. The 
technique also gains strength by using statistical analysis 
and digital signal processing techniques on a large number 
of power consumption signals to reduce noise and to 
amplify the differential signal. The latter is indicated by a 
peak, if any, in the plot of the processed data. This peak 
appears only if the attacker’s guess of a bit or a digit of the 
secret key is correct. The attacker’s goal is to retrieve partial 
or full information about a long-term key that is employed 
in several ECSM executions. 

    As for the SPA attack, Kocher et al. were the first to 
introduce the DPA attack on a smart card implementation of 
DES [43]. Techniques to strengthen the attack and a 
theoretical basis for it were presented by Messerges et al. in 
[10]. Coron applied the DPA attack to ECCs [3].  It is based 
on randomly splitting the key into two parts such that each 
part is different in every ECSM execution. An additive 
splitting using subtraction is attributed to [7]. It is based on 
computing       

                 kP= (k−r)P + rP,                                 (5)  

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

The authors mention that the idea of splitting the data was 
abstracted in [13]. Where r is a n-bit random integer, that is, 
of the same bit length as k. alternatively, Ciet and Joy [16] 
suggest the following additive splitting using division, that 
is, k is written as  

            k =  rk /   + (k mod r).                                     (6) 

Hence, if we let k 1  = (k mod r), k 2 2 =  rk /  and S = rP, 

we can compute    k P =k 1 p + k 2 P                                (7) 

Where the bit length of r is n/2. They also suggest that (6) 
should be evaluated with Shamir-Strauss method as in 
Algorithm. However, they did not mention whether the 
same algorithm should be used to evaluate (5). The 
following multiplicative splitting was proposed by Trichina 
and Bellezza  [9]  where r is a random integer invertible 
modulo u, the order of P. The scalar multiplication kP is 

then evaluated P = [kr 1 (modu)](rP)                       (8)  

To evaluate (8), two scalar   multiplications are needed; first 

R = rP is computed, and then kr 1 R is computed.  

V.E.K.R MODIFIED MONTGOMERY INVERSION 

 A. Linear Congruence’s 

A congruence of the form ax ≡ b (mod m) where m is a 
positive integer, a and b are integers, and x is a variable, is 
called Linear congruence. Such congruence’s arise 
throughout number theory and its applications. 

B. Definition 

 If a and b are integers, then a is said to be congruent to b 
modulo n, write a ≡ b (mod n), if n divides  

(a – b). The integer n is called the modulus of the   
congruence. 

C. Definition 

The equivalence class modulo n of an integer b is the set of 
all integers congruent to b modulo n. 

D Definition 

The ring of integers modulo n, denoted by Zn, is the set of 
(equivalence classes of) is the integers {0, 1, 2, n–1}. 
Addition, subtraction, and multiplication in Zn are 
performed modulo n. 

 We [1] modified the Nevine Maurice Ebied’s Almost 
Montgomery inverse and A SECRET KEY   of Savas and 
Koc to be resistant to SPA attacks as in the following 
algorithm.  

Algorithm: E.K.R Modified Montgomery Inversion 

`Input: u: a n-bit prime, d =  wn /  ,  

m = dw, R2 (mod u) = (2m)2(mod u), u1 = u-1 mod 2w and b 
  [1, 2m − 1], 

 t is Secret key. t: No of precomputed points     1≤ t ≤n 

W: Window width least significant of bit    2w-z ≤ t ≤2w-1   
Output: b-1 R (mod u). 

1. Select a number b such that (b, 2m)     = 1 

2. Compute b such that  

        bb-1   1(mod   2m) 

3.  If f > m then x = b-1 2f (mod u)   

                                x =   b-1 2f (mod u) 

4. If (f   ≤ m) then  

5. x     R2 R-1(mod u)      R =   2m 

6.     x= b-1 2m+f (mod u) f   m+f 

7.     Return(x) 

VI. E KESAVULU REDDY CRYPTOSYSTEM TO 
RESISTANCE AGAINST TO SPA ATTACKS IN 

MOBILE DEVICES 

We develop a new cryptosystem i.e EKR Cryptosystem to 
resistance against Simple Power Analysis Attacks with one 
Public key and one Private Key to resistance against to 
Simple power Analysis Attacks in Side-Channel Attacks in 
elliptic curve cryptosystems based on EKR Modified 
Montgomery inversion algorithm  

 Algorithm A EKR Cryptosystem to Resistance against to 
SPA Attacks 

1.   Select u as an n-bit prime. 

2.   Choose t as Secret key as a prime integer and   t  [1, 
n]. 

3.   Compute w if   2 w-2 ≤    t ≤ 2 w  - 1      and    1 ≤ w ≤ n. 

4.   Compute m = dw 
5.    Select a number b such that   (b, 2m     )   =1. 

6.    Compute b-1 such that     bb -1   1(mod 2m). 

7.    Choose Public key = (u, b).       

     Choose Private Key = (u, b-1)  

8.  Encrypt the message M = 8 then 

                C ≡ M E (mod N)  

   C ≡ M b b -12m  (mod u) 

                 C   ≡ 8 7  * 55 * 64 (mod 17). 

                 C = 16.   Cipher Text = 15. 

9.  To decrypt the cipher text as follows 

                  M = C D  (mod N) 

                  M = C b -1 b -12m (mod u),    
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                  M = 15
55

* 55 * 64(mod 17) 

                  M = 8,  Plain Text = 8. 

B. Case Study I. Performance Analysis of RSA 
Cryptosystems with one Public Key and one Private Key. 

1. Select two prime integers p = 17. q = 5 

2. Compute n = pq = 85, Φ (n ) = (p-1)(q-1) = 64 

3. Choose e=5, Check gcd (5, p-1) = gcd (5, 16) = 1 

4. .Check gcd (5, q-1) = gcd (5, 4) =1 

5. Check gcd (e, (p-1) (q-1)) = gcd( 5, 64) = 1 

                                    e = 5. 

6. Compute d such that ed =1(mod Φ (n) ) 

7. Compute d = e-1 (mod Φ (n) ) 

         d = 5-1 (mod 64) 

Find a unique value d such that 64 divides 5d-1 value 
---- pi 

      d = 13 

              Public Key    = (n, e)   = (85, 5).  

       Private Key   = (n, d).  = (85, 9). 

                    C ≡ M E (mod N)  

     C ≡ 85 (mod 65) = 43,  

8. Encrypt the message M = 8 then 

       C ≡ M E (mod N)  

       C ≡ 85 (mod 85) = 43, Cipher Text = 43 

9. To decrypt the cipher text we have  

       M = Cd (mod n) 

       M = 4313 (mod 85) 

              M = 8, Plain Text = 8 

C.Case Study I1. Performance Analysis of EKR 
Cryptosystem with one Public Key and one Private Key to 
Resistance against to Simple Power Analysis Attacks.  

1. Select u as a prime integer = 13. 

2.  Select t is secret key as a prime integer = 5. 

3.   Compute w if     2 w-2 ≤    t ≤ 2 w  - 1     

                and  1 ≤ w ≤ n  

4.   Compute m = dw; m=6. 

5. Select a number b such that   

         (b, 2m     )   =1     b =7. 

6.  Compute b -1 such that  

    bb -1 ≡ 1(mod 2m)   b-1 = 55. 

            Public Key     = (u, b)      = (13, 7).  

            Private Key   = (u, b-1 ).   = (13, 55). 

7. Encrypt the message M = 8 then 

                     C ≡ M E (mod N)  

        C ≡ M b b -12m  (mod u) 

                     C ≡ 8 7  * 55 *  64 (mod 13). 

                     C = 2097152 X 55 X 64(mod 13) 

                         = 11,   Cipher Text = 11. 

8. To decrypt the cipher text as follows 

                         M = C D (mod N) 

                         M = C b -1 b -12m (mod u), 

                         M = 11
55

* 55 * 64(mod 13)                               

           =6.6548818149889892673877313377X 1030 

                              M = 8, Plain Text = 8. 

 C.Case Study II. Performance Analysis of RSA 
Cryptosystems with one Public Key and one Private Key. 

1. Select two prime integers  p = 13. q = 5 

2. Compute n = pq = 65, Φ (n ) = (p-1)(q-1)  

                                = 48 

3. Choose e=5, Check gcd (5, p-1) =  gcd (5, 12) = 1 

    4. Check gcd (5, q-1) = gcd (5, 4) =1 

        5. Check gcd (e, (p-1) (q-1)) = gcd (5, 48) = 1 

                                  e = 5. 

            Compute d such that ed = 1(mod Φ (n) ). 

                         Compute d = e-1 (mod Φ (n) ) 

                                                    d = 5-1 (mod 48) 

 6. Find a unique value d such that 64 divides 

            5d-1 value ---- pi ,      d = 10 
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            Public Key     = (n, e)    = (65, 5).  

            Private Key    = (n, d).    = (65, 10). 

7. Encrypt the message M = 8 then 

                               C  ≡ M E (mod N)  

                  C  ≡ 85 (mod 85) = 43,  

                                Cipher Text = 43 

8. To decrypt the cipher text we have  

                   M = Cd (mod n) 

                          M = 4310 (mod 65) 

         M = 64, Plain Text = 64. ** Wrong   ** 

VII. PERFORMANCE COMPARISONS 

In the existing system experiments were performed on both 
PCs and mobile devices. Data was collected from various 
studies conducted by research institutes and individual 
experiments. Elliptic curve cryptosystems provides more 
security and efficiency for mobile devices and PC’s but also 
it is alternative to conventional cryptosystems like RSA and 
DSA. 

In the proposed EKR Cryptosystem to resistant against to 
Simple Power Analysis Attacks was most suitable for side-
channel attacks in elliptic curve cryptosystems. Because 
secret key t , Public Key and Private Key are infeasible, so 
the attacker unable to guess the secret key in the 
cryptographic operation. The attacker could not measure the 
power consumption using the execution of a cryptographic 
algorithm store the wave form using oscilloscope and 
process the information to learn the secret key. 

The generation of secret key and Private Key are not easy to 
guess to retrieve the valuable information from single leaked 
information in a power consumption electromagnetic 
emanation trace in Simple Power Analysis Attacks. Finally 
the proposed application i.e. EKR cryptosystem to resistance 
against to Simple power Analysis attacks most suitable for 
mobile devices than the conventional cryptosystems like 
RSA. 

VIII.CONCLUSION 

ECC is the most for suitable PKC schemes use in a 
constrained environment. Its efficiency and security makes 
it an attractive alternative to conventional cryptosystems, 
like RSA and DSA, not just in constrained devices, but also 
on powerful computers. 

It is no doubt about ECC was being recognized as a fast 
powerful cryptographic scheme. We provided a new 
cryptosystem i.e EKR Cryptosystem to resistance against to 
Simple Power Analysis Attacks and more efficient to 
conventional cryptosystems like RSA. Wireless devices are 
rapidly becoming more dependent on more security features 
such as the ability to do secure email, web browsing and 

virtual private networking to corporate networks and ECC 
allows more efficient implementation of all of these 
features.  
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