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Abstract—In this paper an attempt has been made to study the 
propagation of G type seismic waves in homogeneous layer 
overlying an elastic half space under initial stress.  Here we 
have taken constant rigidity and density in upper layer and 
variation in elastic modulus in the lower transversely isotropic 
half space.  We have obtained dispersion equations and the 
displacement of the wave. We have seen that initial stress has 
dominant effect on the propagation of G type wave. As a 
particular case dispersion equation coincides with that of Love 
wave. Dispersion curves are plotted for different variation in 
inhomogeneity parameters and initial stress parameters. 
Variation in group velocity against scaled wave number has 
shown for different values of initial stress parameters. Finally 
surface plots of group velocity have drawn with respect to  
wave number and depth parameter different values of initial 
stress parameter. 

Keywords— G type seismic wave, homogeneous layer, 
isotropic half space, initial stress 

I. INTRODUCTION 

 
HE study of surface wave is important to seismologists 
and in understanding of the causes and estimation of 

damage due to earthquakes. The term “Initial stress” is 
meant by stresses developed in a medium before it is being 
used for study. The Earth is an initially stressed medium, 
due to presence of external loading, slow process of creep 
and gravitational field a considerable amount of stresses 
(called prestresses or initial stresses) remain naturally 
present in the layers. Seismograms record surface waves of 
distant surface earthquakes as long trains of dispersed waves 
with large amplitudes. In seismogram Love waves are 
registered only in the horizontal components but Rayleigh 
waves which are polarized in the vertical plane, are 
registered both in horizontal and in vertical components. 
Love waves are recorded only in the radial one. Love waves 
of long periods (60-300s) are also called G waves. They are 
called G-waves after Gutenberg (1953). It takes about 2.5 
hours for G waves to make a round trip of earth. For large 
earthquakes, surface waves that travel around the Earth 
more than once are observed. 
 G type wave was studied by several researchers. Notable 
are Bath (1957), Jeffreys (1959), Lehman (1961),  
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Bhattachrya (1963), Brune et al (1963), Haskell (1964), 
Chattopadhyay (1978). Bath (1957) studied the shadow 
zones, travel times and energies of longitudinal seismic 
waves in the presence of an asthenosphere low-velocity 
layer. Long period surface wave from the Chilean 
earthquake of May 22, 1960, recorded in linear the 
seismograph is studied by Burne et al (1961). Lehmann 
(1961) studied the S waves and the structure of upper 
mantle. A case of well developed G-type waves was 
provided by the earthquake of January 1960, in Peru. From 
this earthquake Bath and Arroyo (1962) presented the 
results regard to absorption and velocity dispersion of G-
waves. Mal (1962) studied the possibility of the generation 
of G-waves with the lower medium to be isotropic. From the 
Niigata earthquake of June 16, 1964 Aki (1966) discussed 
the generation and propagation of G waves. He discussed 
the estimation of earthquake moment, released energy, and 
stress-strain drop from the G wave spectrum in part 2. 
Chattopadhyay and Keshri (1986) discussed the generation 
of G type waves under initial stress. Chattopadhyay et al 
(2009) discussed about the dispersion of G type in low 
velocity layer.  
In this paper we represented the low-velocity layer by 
assuming the variation in the elastic constant L with depth in 
non-homogeneous half-space under initial stress in the form 

(1 cos )L N sz  , where   is small positive constants, s is 
real depth parameter and N  is a real constant. With this 
law of variation the equations of motion reduce to Hill’s 
equation with periodic coefficients which has been solved 
by the method given by Valeev (1960). Valeev considered a 
certain class of system of linear differential equations with 
periodic coefficients which have the property that, by means 
of Laplace transformation, they may be converted to a 
system of linear difference equations, which in turn may be 
solved by the method of infinite determinants. 

II. FORMULATION AND SOLUTION OF THE PROBLEM 

Fig. 1.Geometry of the problem 
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Let us consider homogeneous isotropic medium of thickness 
H overlying a transversely isotropic medium with variation 
in the elastic constant L with depth as 

(1 cos )L N sz                              (1) 
where   is positive real constant, N a real constant and s  is 
real depth parameter. The x-axis is taken as horizontal axis, 
z-axis as vertically downwards and origin has taken at the 
interface (Fig. 1). We consider the propagation of 
horizontally polarized surface waves of shear type, 
propagating along x axis. So the displacement components 
are  

0, ( , , ).u v v x z t     
Therefore, the equation of motion for upper homogeneous 
isotropic layer is 

2
1 1 1

1 1 1 2

v v v
x x z z z

  
                 

,                                  (2) 

where constant 1  is rigidity and 1  is the density of the 
medium.    
In the lower transversely isotropic medium the displacement 

2 ( , , )v x z t  satisfies differential equation 

   
2 2

21 23 2 22
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x z x t


   
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                                 (3) 

where 21 232    ,  2  xy yz
v vS N e N S N e L
x z
 
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           (4) 

P  is initial stress. 
using eq. (4) in eq. (3), we obtain  

22
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2 22
v v vP vN L

x x z z x t

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.                  (5) 

Since stresses and displacements are continuous at the 
interface and the upper layer is stress free hence the 
boundary conditions are 

1 2
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1
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i v v z
v v

ii L z
z z



 
 

 
 

 

1( ) 0    at  viii z H
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                                  (6) 

Using separation of variable we substitute  
     

1 1, , ik x ctv x z t V z e   , in (2) we obtain 
2

21
1 12 0d V m V

dz
   .                                                           (7) 

Where 
2

2 2
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1cn k
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 
, 1

1
1





 ,    k is the wave number 

and c is the phase velocity.     Therefore , we 

have      
1 cos sin ik x ctv z A nz B nz e                            

(8)     
As upper surface is stress free, hence using boundary 
condition (iii) of eq. (8) we get 

 0 = -  = R  (say)
cos( ) sin( )

A B
nH nH

. 

Hence by (8) we have 

        
1 0sin cos cos ik x ctv z nz nz R n z H e    

In the lower transversely isotropic half-space the 
displacement 2 ( , , )v x z t  satisfies differential equation 

2 2
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2 22
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where the density   is assumed to be constant. 

Taking ( )
2 2( , , ) ( ) ik x ctv x z t V z e   and using 

(1 cos )L N sz  , we get 
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Multiplying by pze and then integrating with respect to z 
we get 
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 (9)                                                                             
Using the boundary conditions 6(i), 6(ii) we have 
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           (10) 

Defining the Laplace transform of 2 ( )V z  as 

2
0

( ) ( )pzF p e V z dz


  .                                              (11) 

Using Eqs.(10) and (11) in eq.(9) we obtain 
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where 
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To find F(p) from (12) we replace p by p ism and then 

divide throughout by ( ) ( 0)nism m  . We then obtain the 
following infinite system of linear algebraic equations in the 
quantities ( ), ( 0, 1, 2,...)F p ism m     

 

2

2 2

2

( ) { ( 1)} { ( 1)} { ( 1)}
2 2

( ) ( ) ( )

( ) { ( 1)} { ( 1)} { ( 1)}
2 2

n

n

n

isism p is m p is m F p is m

ism p ism F p ism

isism p is m p is m F p is m

 



 







          
 

    

          
 

 
1 2( ) [ ( ) ]nism A p ism A                                           (14) 

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

where p may be considered as a parameter in the 
coefficients. It should be noted that in order not to have to 
consider the special case m = 0 separately, we include (14) 
in (12) by agreeing to regard ( ) 1nism   when m = 0. 
Solving the system of difference equations (14) we obtain 
F(p) as the ratio of two infinite determinants, viz., 
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The first approximation of the eq. (15) is 
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. 
when    L N the above case reduces to ref [14]. 
The second approximation of eq. (15) is 
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Neglecting the terms containing 2  and their higher 
powers, we get 
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Then 2 ( )V z will be given by the inversion formula as 
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The residues 1 2 3, ,R R R  at the 
poles , ,p p is p is       , are given, 
respectively, by 
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Eqs.(18), (19) and (20) show that the conditions for a large 
amount of energy to be confined near the surface are 
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2 22 0s   .                                       (22) 

 
Eq. (21) gives 
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Eq. (23) gives us the dispersion equation for G type waves 
in a non-homogeneous layer overlying transversely isotropic 
half space with initial stress. Considering upper layer is 
isotropic the above equation transform to  
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Eq. (24) is the dispersion equation for G type waves in 
isotropic layer overlying transversely isotropic half space 
with initial stress. As a special case in the absence of initial 
stress, eq. (24) reduces to dispersion equation of Love waves 
in an isotropic layer overlying a transversely isotropic half 
space ref [15], i.e.  

2

22
22

2 2
1

2

1
tan 1

1

c
ckH

c






 
   
  

                                  (25) 

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

kH

c/
 1

1

2

3

4
5

which is the usual dispersion equation for Love waves with 
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Now from Eq.(22) we have 
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N Pkc k s

N
        

.           (26) 

Then the group velocity U is given by 

2
2 2

2 1
2( )

2 1
2

Pk
d NU kc
dk Pk s

N



  
  

   
 

                           (27) 

 

III. NUMERICAL CALCULATIONS, RESULTS AND 
DISCUSSIONS 

For numerical calculation we have taken 

1 1 1/ 0.02,    N/ 0.2,   N/ 0.1        the results 

are presented in figures 2-7.  The values of 1/c  , have been 

computed from eq. (23) for 0 1R   as a function of KH , 
and are presented in Fig. 2 and Fig. 3. In Fig. 2 we have 
shown the variation in dimensionless phase velocity 1/c   

against dimensionless wave number kH  for different 
values of / 2P N  as given in table 1(lies within Fig. 2) for 
a fixed value of 0.2  .  In Fig. 3 we have plotted the 
variation in dimensionless phase velocity 1/c   against 

dimensionless wave number kH  for different values of   
as given in table 2(lies within Fig. 3) for a fixed value 
of / 2 0.2P N  . The values of 1/c  , have been computed 

from eq. (24) for as a function of kH , and are presented in 
Fig. 4 and Fig. 5. In Fig. 4 shows the variation in 
dimensionless phase velocity 1/c   against dimensionless 

wave number kH  for different values of / 2P N  as given 
in table 3 (lies within Fig. 4) for a fixed value of 0.2  .  
In Fig. 5 we have plotted the variation in dimensionless 
phase velocity 1/c   against dimensionless wave number 

kH  for different values of   as given in table 4(lies within 
Fig. 5) for a fixed value of / 2 0.2P N  .   Variation in 
dimensionless group velocity  2/U B  with respect to scaled 
wave number k/s is shown in Fig. 6 for different values of 

/ 2P N  as given in table 5(lies within Fig. 6).  Fig. 7 we 
have drawn a set of surface plots for variation of group 
velocity U with respect to parameter k and s for different 
values of / 2P N . In Fig. 2 and Fig 4 we have seen that the 
phase velocity is decreases with the increases of initial stress 
and from Fig. 3 and Fig. 5 it is clear that phase velocity 
decreases slightly with increases of parameter . By 
comparison from Fig. 2 with Fig 4 and Fig.3 with Fig 5 we 
can conclude that velocity increases with the increases of 
inhomogeneity parameter.   From Fig. 6 we see that group 
velocity  U  approaches 2  asymptotically with increase in 
scaled wave number k/s and it is decreases with the 

increases of initial stress. In Figure 7 we have seen that 
group velocity depends on initial stress. So we can say that 
phase velocity and group velocity is influenced by initial 
stress, and it depends on wave number, depth parameter s 
and parameter . This study may be useful to understand the 
nature of seismic wave propagated during earthquake. 
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  Fig 2: Variation of dimensionless phase velocity 

1/c  against dimensionless wave number kH  

  Fig 3: Variation of dimensionless phase velocity 

1/c  against dimensionless wave number kH  
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  Fig 4: Variation of dimensionless phase velocity 
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Fig 7: Variation of group velocity  U  with respect to 
parameter k  and s  for different stress parameters 
 

  Fig 5: Variation of dimensionless phase velocity 

1/c  against dimensionless wave number kH  
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  Fig 6: Variation of dimensionless phase velocity 

2/U  against scaled wave number /k s  
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IV. CONCLUSION 
So we can say that phase velocity and group velocity is 
influenced by initial stress, and it is depend on wave 
number, depth parameter s, inhomogeneity parameter. This 
study may be useful to understand the nature of seismic 
wave propagated during earthquake.    
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