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 Abstract—An approach combining information generating 
from different stochastic differential equations are recognized 
for improving predictive quality of stem profile (taper). The 
stochastic differential equations stem taper models were fitted 
to a data set of Scots pine trees collected across the entire 
Lithuanian territory. Comparison of the predicted stem taper 
and stem volume with those obtained using regression based 
models showed a predictive power to the stochastic differential 
equations models. 

 
Index Terms—Stochastic differential equation, Gompertz, 

stem taper, height, diameter outside bark, volume 
 

I. INTRODUCTION 

REDICTIVE forestry is a specific application of the 
field of mathematical modelling for describing the 
behavior of an individual tree and stand under a given 

set of environmental conditions. Traditionaly, the 
relationship between volume, height and diameter has been 
modelled based on simple linear and nonlinear regression. 
The base assumption of regression models that observed 
variations from regression curve are constant at different 
values of a covariate would be realistic if the variations 
were due to measurement errors. Instead, it is unrealistic, as 
the variations are due to random changes on growth rates 
induced by environmental random perturbations. Stochastic 
differential equation models do not have such weakness.  
There is a long history characterizing the stem profile 
(taper) of trees. Mathematically defining stem taper is 
necessary for the accurate prediction of stem volume. Taper 
equations do just this and are important to foresters and 
forest scientists because they provide a flexible alternative 
to conventional volume equations. These equations are 
widely used in forestry to estimate diameter at any given 
height along a tree bole and therefore to calculate total or 
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merchantable stem volume. One crucial element in these 
models is the functional response describing the relative 
diameter of tree stem consumed per relative height for given 
quantities of diameter at breast height D and total tree height 
H. The most studied of the stem taper relations is from 
simple taper functions to more complex forms [1]-[7]. Taper 
curve data consist of repeated measurements of a continuous 
diameter growth process over height of individual trees. 
These longitudinal data have two characteristics that 
complicate their statistical analysis: a) within-individual tree 
correlation that appears with data measured on the same tree 
and b) independence but extremely high variability between 
the experimental taper curves of the different trees. Mixed 
models provide one of powerful tools to analysis of 
longitudinal data. These models incorporate the variability 
between individual trees by means of the expression of the 
model's parameters and in terms of both fixed and random 
effects. Each parameter in the model may be represented by 
a fixed effect that stands for the mean value of the parameter 
as well as a random effect that expresses the difference 
between the value of the parameter fitted for each specific 
tree and the mean value of the parameter - the fixed effect. 
Random effects are conceptually random variables. They 
are modelled as such in terms of describing their 
distribution. This helps to avoid the problem of 
overparameterisation. A large number of mixed-effect taper 
models have been completed, and the study is still one of 
the important issues in progress [5]-[7]. 
 The increasing popularity of mixed-effects models lies in 
their ability to model total variation, splitting it into its 
within- and between-individual tree components. We 
propose to model these variations using stochastic 
differential equations that are deduced from the standard 
deterministic growth function by adding random variations 
to the growth dynamics [8]-[15]. We thus consider 
stochastic differential equation models whose drift and 
diffusion terms can depend linearly or nonlinearly on state 
variables. Although numerous sophisticated models exist for 
stem profile, relatively few models have been produced 
using stochastic differential equations [16]. 
 Our main contribution is to expand stem taper and stem 
volume models by using stochastic differential equations 
and to show how an adequate model can be made. In this 
paper attention is restricted to homogeneous stochastic 
differential equations in the Gompertz, Geometric Brownian 
Motion and Ornstein-Uhlenbeck type.  
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II. STOCHASTIC DIFFERENTIAL EQUATIONS MODELS 

 Taper Models 

 Consider a one-dimensional stochastic process )(xY  

evolving in M different experimental units (e.g. trees) 
randomly chosen from a theoretical population (tree 
species). We suppose that dynamics of relative diameter 

i
i

D
dY   via relative height i

i

H
hx   (  1;0ix ) is 

expressed by a SDE, where d  is the diameter outside bark 

at any given height h , iD  is the diameter at breast height 

outside bark of ith tree, iH  is the total tree height from 
ground to tip of ith tree. In this paper is used a class of the 
Ito SDEs that are reducible to an Ornstein-Uhlenbeck 
process. The first model of relative diameter dynamic is 
defined in the following Gompertz form [10], [12] 
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where )( ii xY  is the value of the diameter growth process at 

relative height ii xx 0 ;  G , G , G  are fixed effects 

parameters (the same for the entire population of trees); iy0  

is non-random initial relative diameter. The )( ii xW , 

Mi ,...,1  are mutually independent standard Brownian 

motions. Intuitively, we interpret the terms )( ii xW , 

Mi ,...,1  as ecological and environmental noises. The 
second model of relative diameter dynamic is defined in the 
following Geometric Brownian Motion form  
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where GB , GB  are fixed effects parameters (the same for 

the entire population of trees). The third model of relative 
diameter dynamic is defined in the following Ornstein-
Uhlenbeck form  
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where  OU , OU , OU  are fixed effects parameters (the 

same for the entire population of trees).  
 In this paper is used a segmented stochastic taper process 
which consists of three different SDEs defined by (1)-(3). It 
conforms to the paradigm of stem taper curve that marks 
three different stem sections along the bole (two points of 
inflection): the lower section corresponding to a neiloid 
shape, the middle section corresponding to a parabolic 
shape, and the upper section corresponding to a conic shape. 
Max and Burkhart [17] proposed a segmented polynomial 
model that uses two joining points to link three different 
stem sections. Following this idea the stem taper SDEs 
models (with two joining points: 0.15, 0.75) are defined in 
the following two different forms (Gompertz-GBM-OU) 
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where     100  iii yxYP , Mi ,...,1  (stem butt is fixed),  
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where 1))(( 00  iii yxYP , 1))((  i
n

i
n

i
ii

yxYP , 

Mi ,...,1  (stem butt and top are fixed). Assume that tree i 

is observed at 1in  discrete relative height points 

)...,,( 10 inxxx  Mi ,...,1 . Let iy  be the vector of responses 

(relative diameter) for tree i, ),...,,( 10
i
n
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i

yyyy  , where 
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i yxy )( , ),...,,( 21 Myyyy   be the n-dimensional total 

relative diameter vector, 



M

i
inn

1

)1( . Therefore, we 

need to estimate fixed-effects using simultaneously all the 
data in y . Both models proposed in this paper use one tree-

specific prior relative diameter iy0  (this known initial 

condition additional needs upper stem diameter measured at 
a stem height of 0 m). The transition probability density 

function of relative diameter stochastic processes )( i
j

i xY , 

 1;0i
jx , Mi ,...,1 , inj ,...,0  defined by Eqs. (1)-(3), 

can be deduced in the following form: for the Gompertz 
stem taper model  
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for the Geometric Brownian Motion stem taper model  
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and for the Ornstein-Uhlenbeck stem taper model  
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The mean and variance functions )( ixm , )( ixv  ( ix  is the 

relative height of ith tree) of the stochastic processes (1)-(3) 
are defined 
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for the Gompertz model,  
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for the Geometric Brownian Motion model, and for the 
Ornstein-Uhlenbeck model the mean and variance 

functions )( ixm , )( ixv  are defined by (9), (10). 

 Using transition densities (6)-(8) of SDEs (1)-(3), the 
transition probability density functions of relative diameter 

stochastic process )( i
j

i xY ,  1;0i
jx , Mi ,...,1 , inj ,...,0  

defined by Eqs. (4), (5) take the forms (15), (16), 
respectively.





















75.0),,,),,75.0(,(

75.015.0),,),,,,15.0(,(

15.0),,,,,(

),,,,,,,,,(

0

0

01

i
jOUOUOUGB

i
GB

i
j

i
jOU

i
jGBGBGGG

i
G

i
j

i
jGB

i
jGGG

ii
j

i
jG

OUOUOUGBGBGGG
ii

j
i
j

xxmxyp

xymxyp

xyxyp

yxyp









 (15) 

 





















75.0),,,,01,(

75.015.0),,),,,,15.0(,(

15.0),,,,,(

),,,,,,,,,(

0

0

02

i
jOUOUOU

i
j

i
jOU

i
jGBGBGGG

i
G

i
j

i
jGB

i
jGGG

ii
j

i
jG

OUOUOUGBGBGGG
ii

j
i
j

xxyp

xymxyp

xyxyp

yxyp









(16) 

The mean and variance trajectories of the Gompertz-GB-
OU stem taper processes (4), (5) are given, respectively 
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In this paper, we apply the theory of a one-stage 
maximum likelihood estimator for the stem taper SDE 
models (4), (5). Both models have closed form transition 
probability density functions (15), (16). Thus, the log-
likelihood function for stem taper SDE models (4), (5) are 
given (k=1, 2) 
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Data 

 We focus on the modelling of Scots pine (Pinus 
Sylvestris) tree data sets. Scots pine trees dominate 
Lithuanian forests, growing on Arenosols and Podzols forest 
sites and covering 725500 ha. Stem measurements for 300 
Scots pine trees were used for volume and stem profile 
models analysis. All section measurements include of 3821 
data points. Summary statistics for diameter outside bark at 
breast height (D), total height (H) and age (A) of all trees 
used for parameters estimate and models comparison are 
presented in Table 1. 
 

TABLE 1 
SUMMARY STATISTICS 

Data Number  
of trees 

Min Max Mean St. 
Dev. 

D cm) 300 6.3 53.8 24.6 9.9 
H (m) 300 5.6 34.5 20.6 5.4 
A (yr) 300 23 161 77.2 25.8 

 
 

III.   RESULTS AND DISCUSSION 

Estimation results are presented in Table 2. All 
parameters are highly significant ( 05.0 ). The fit 
statistics (mean absolute prediction bias, least squares 
based Akaike’s [18] information criterion, and an adjusted 

coefficient of determination (
2

R )) for the SDEs stem taper 
models (4), (5) are very close to the other commonly used 
stem taper regression models. The diameters' estimate 
along the stem for both SDEs stem taper models proves 
satisfactory, with mean absolute prediction bias 1.088 cm, 
0.950 cm, respectively. The percent of variation explained 
attains high level 98.4%. To test the compatibility between 
taper and volume equations of all used stem taper models, 
the observed volume values from the sampled trees were 
calculated in the following form  
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The predicted volume for the sampled tree is computed 
using numerical integration. On the whole, for both used 
taper models the mean absolute prediction bias proves to be 
40 dm3. The percent of variation explained attains high 
levels, equaling 98.8%. Taper profiles for three randomly 
selected Scots pine trees with diameters outside bark at 
breast height of 6.3 cm, 24.4 cm, 41.7 cm, and total tree 
heights of 6.8 m, 25.3 m, 33.1 m, respectively, are plotted in 
Fig. 1. Fig. 1 consists of stem taper curve (the mean of the 
stem taper) and standard deviation (the mean   standard 
deviation of the stem taper). Fig. 1 illustrates the mean (Eq. 
(17), (19) – solid line) and standard deviation trajectory (Eq. 
(18), (20) – dash-dot line) of diameter at any given height.  
It is clear that these tree forms follow the stem data very 
closely. Graphical examination of residuals leads to the 
conclusion that SDEs stem taper models (3), (4) describe 
stem taper quite well. 

 
TABLE 2 

ESTIMATED PARAMETERS (STANDARD ERRORS)  
Parameters Model (4) Model (5) 

G
 -2.039 

(0.019) 
-2.039 

(0.019) 

G  10.336 
(0.303) 

10.336 
(0.305) 

G  0.287 
(0.006) 

0.288 
(0.006) 

GB  -0.972 
(0.009) 

-0.884 
(0.012) 

GB  0.267 
(0.004) 

0.267 
(0.004) 

OU  -0.394 
(0.094) 

2.764 
(0.085) 

OU  0.166 
(0.011) 

0.245 
(0.024) 

OU  0.404 
(0.012) 

0.236 
(0.009) 
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(b) 

Fig. 1.  Tree profiles for three randomly selected pine trees generated using 
SDEs models (4), (5): (a) Eqs. (17), (18); (b) Eqs. (19), (20). 

 

IV.   CONCLUSIONS 

 Two new taper models were developed using stochastic 
differential equations. The both SDEs stem taper models 
provided here can be predicted from simple and standard 
tree measurements: total height, diameter outside bark at 
breast height, and diameter outside bark at the butt.  
 The SDEs approach allows us to incorporate new tree 
variables, mixed-effect parameters, and new forms of 
stochastic dynamics.  
 Despite the advantages of the SDEs stem taper models, it 
should be kept in mind that their main weakness is the 
sophisticated framework of the mathematical model. 
 Finally, we may notice that stochastic differential 
equation methodology may be of interest far beyond the 
modelling5 of a tree taper. 
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