
 

 
ABSTRACT 

The study is about impact of a short elastic rod (or slug) on a 
stationary semi-infinite viscoelastic rod. The viscoelastic materials 
are modeled as standard linear solid which involve three material 
parameters and the motion is treated as one-dimensional. We first 
establish the governing equations pertaining to the impact of 
viscoelastic materials subject to certain boundary conditions for 
the case when an elastic slug moving at a speed V impacts a semi-
infinite stationary viscoelastic rod. 
 The objective is to predict stresses and velocities at the interface 
following wave transmissions and reflections in the slug after the 
impact using viscoelastic discontinuity. If the stress at the interface 
becomes tensile and the velocity changes its sign, then the slug and 
the rod part company. If the stress at the interface is compressive 
after the impact, the slug and the rod remain in contact. After 
modelling the impact and solve the governing system of partial 
differential equations in the Laplace transform domain. We invert 
the Laplace transformed solution numerically to obtain the stresses 
and velocities at the interface for several viscosity time constants 
and ratios of acoustic impedances. In inverting the Laplace 
transformed equations, we used the complex inversion formula 
because there is a branch cut and infinitely many poles within the 
Bromwich contour.  In the discontinuity analysis, we look at the 
moving discontinuities in stress and velocity using the impulse-
momentum relation and kinematical condition of compatibility. 
Finally, we discussed the relationship of the stresses and velocities 
using numeric and the predictable stresses and velocities using 
viscoelastic discontinuity analysis.   
 
Keyword: Interface stress, Interface velocity, ratios of acoustic 
impedances, viscoelastic, Viscosity time constants. 
 
                                   I.  INTRODUCTION 
There are materials for which a suddenly applied and 
maintained state of uniform stress induces an instantaneous 
deformation followed by a flow process which may or may 
not be limited in magnitude as time grows [1]. These 
materials are said to exhibit both an instantaneous elasticity 
effect and a creep characteristic. This behavior clearly 
cannot be described by either elasticity or viscosity theories 
alone as it combines features of each and is called 
viscoelastic. Viscoelasticity is a generalization of elasticity 
and viscosity. The ideal linear elastic element is the spring 
whilst the ideal linear viscous element is the dashpot. 
Energy is stored in springs as elastic strain energy and 
energy is dissipated in a dashpot as heat [2]. 
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In general there are four types of analysis for low speed 
collisions, associated with particle impact, rigid body 

impact, transverse impact on flexible bodies (i.e. transverse 
wave propagation or vibrations) and axial impact on flexible 
bodies (i.e. longitudinal wave propagation) [3]. We are 
interested in the latter impact where it generates longitudinal 
waves which affect the dynamic analysis of the bodies. The 
unifying characteristic of waves is propagation of 
disturbances through the medium. The properties of the 
medium that affect the waves and determine the speeds of 
propagation are density   and Young’s modulus E , of 

deformability. 
 In this paper, we predict the stress and velocity at the 
interface after a moving slug impacts a stationary semi-
infinite rod using viscoelatic discontinuity analysis. If the 
stress at the interface becomes tensile and the velocity 
changes its sign, then the slug and the rod part company. If 
the stress at the interface is compressive after the impact, 
then the slug and the rod remain in contact. In the elastic 
impact considered by R.P. Menday [4], the stress becomes 
tensile if the ratio of acoustic impedances 1z  and the stress 
becomes compressive if the ratio of acoustic impedances 

1z  when the wave set up in the slug by the impact has 
returned to the slug/rod interface. In this viscoelastic impact 
we investigate how the viscosity time constants in the slug 
and in the rod give rise to different interface stresses and 
interface velocities following wave transmission in the slug. 
 

II.  MATHEMATICAL MODEL OF VISCOELASTIC 
IMPACT 

We model the impact by having a finite length slug, moving 
with speed V , impacting a stationary semi-infinite rod and 
we solve the problem in the Laplace transform domain for 
the general case of viscoelastic slug and rod. In deriving the 
numerical solution, we firstly consider the slug is elastic and 
the rod is viscoelastic.  

 
 We model the viscoelastic material as a standard linear 
solid (Fig. 1). Secondly, we consider the slug is viscoelastic 
and the rod is elastic and lastly, we consider both materials 
are viscoelastic. We then numerically compute the interface 
stress and interface velocity using the complex inversion 
formula [5]. 
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Let u


 and u


 be additional displacements in the slug and in 
the rod following the impact respectively,   and 


 be the 

stress in the slug and in the rod respectively, E  and E  be 
the young modulus in the slug and in the rod respectively, 
  and   be the density in the slug and in the rod 

respectively. The quantities , 


,   and 


 are material 

constants with dimension of time where the .  notation 
indicates dimensional variables. We choose the origin of 
coordinates at the center of the interface and axis X


0  along 

the axis of the rod and we assume the impact takes place at 
time 0t

 . When a slug moving at a speed V ,  impacts the 
rod at time 0t


 and at 0X


, we write the position at time 

t


 of the cross-section of the slug which was at location X


 
at time 0t

  as 

   tXutVXtXx


,,         for 0 Xhs


      (1) 

And the cross-section of the rod which was at location X


 at 
time 0t


  as 

      tXuXtXx


,,           for    0X


            (2) 

Then the equation of motion in the slug is 
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And the equation of motion in the rod is 
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We model the slug and rod as a standard linear solid so that 
the equation of viscoelastic stress related to u


 in the slug is 
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And the equation of viscoelastic stress related to u


 in the 
rod is 
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We now define the non-dimensional quantities 
 ,,,,,,,,,,, uutXxx  by the non-

dimensionalising scheme below 

XhX s

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h
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 , uh

c

V
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c

V
u s
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wh
c

V
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
, xhx s


, 
c

hs
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
c
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,  
c

hs ,   
c
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Where  

E

c 2 ,  

E

c 2  , 
c

c
z




  and  
c

c
 . 

If we now use (7) to non-dimensionalize equations (1) and 

(2) for x
  and x


, the non-dimensional displacements x

  

and x


 are given by 

     tXut
c

V
Xx ,                                        (8) 

    tXu
c

V
Xx ,                                              (9) 

We then non-dimensionalze (3) – (6) to obtain the non-
dimensional equation of motion and stress-strain relations 
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IV.  GENERAL SOLUTIONS 

In order to solve for the additional displacements u  and u  
of the waves propagating in the slug and the rod, we take 
Laplace transforms of the equations (10) – (13) with respect 
to t  and solve the differential equations for the transformed 

displacement û  and û  in the s domain. Taking the 
Laplace transform of the non-dimensionalized equations 
(10) and (11), after differentiating (12) with respect to X , 
gives 
    2ˆ

ˆ
su

c

V

X



                                                    (14) 
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Where 
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1

1
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)(2  

Equating (14) and (15) yields the differential equation 

below for ),(ˆ sxu    

    0ˆ
ˆ

)( 2
2

2
2 




su
X

u
s                                      (16) 

Solving (16), we obtain the general solution for the 

transform of the additional displacement ),(ˆ sxu  in the 

slug, 

    )()( )()(),(ˆ s

sX

s

sX

esbesasXu 


                      (17) 

Repeating the same process for the equations (11) and (13) 

gives the general solution ),(ˆ sxu  for the transform of the 

additional displacement in the rod, 
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V.   BOUNDARY CONDTIONS 

 In order to find )(sa , )(sb , )(sd  and )(sf  in (17) and 

(18), we apply the boundary conditions described below. 
1. The interface conditions state that the particle velocity in 
the slug and in the rod has to be the same at 0X


 that is 
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In non-dimensional form, the above equation becomes 

    
t

u

t

u








 1                                            (20) 

Then we Laplace transform equation (20) and substitute 
from (17) and (18), we obtain 

      )()()()(
1

sfsdssbsas
s

                   (21) 

2. At the interface 0X


, the stress in the slug and in the rod 
must be the same so we have 
     

                                                          (22) 
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If we non-dimensionalize and take Laplace transform of the 
above equation we have  
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Since  
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
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     (24)  and )(
ˆ

ˆ 2 s
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u

c
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
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Substituting the derivatives of (17) and (18) at 0X


 into 
the equation (23), gives 

    )()()()()()( sfsdssbsasz               (26) 

3. When the wave in the slug reaches the boundary 1X , 
the stress in the slug at 

shX 


  

is zero that is 0  
Non-dimensionalize and take Laplace transform of the 
above equation to obtain 
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Substituting (17) at 1X  into the above equation, we 
obtain 
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4. The stress in the rod at sahX   is zero, that is 0


 

Non-dimensionalize and take Laplace transform of the 
above equation to obtain 
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Substituting (18) at aX   into the above equation, we 
obtain 
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Equations (21), (26), (27) and (28) give four equations in 
the four unknowns )(sa , )(sb , )(sd  and )(sf . Solving for 

these unknowns and substituting into (17) and (18) gives the 

additional displacements û  and û  in the Laplace transform 
domain, 
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Having found the general solution (29) and (30) for the 
displacements in the slug and the rod in the s-domain, we 
then can derive the equations for stress and the velocity in 
the slug and the rod. To do this we use the complex 
inversion formula to invert the transforms. As the general 
solution in the Laplace transform domain is particularly 
complicated, we consider its inversion in certain special 
cases. In solving for stress and velocity, we are considering 
a slug traveling at speed V  which impacts semi-infinite rod. 
These solutions apply provided the interface stress remains 
compressive. If the stress at the interface becomes tensile, 
then the solution no longer valid since there can be no 

longer tensile stress at the interface. It is then necessary to 
modify the solution by introducing waves traveling away 
from the interface stress at zero. If the stress is compressive, 
then the slug and the rod remain in contact until such time 
as the stress drops to zero. 
 Firstly, we consider the general case when both the slug 
and the rod are viscoelastic. Then we apply the Bromwich 
contour to lay-out the calculation of the complex integrals 
along the contour and determine the poles and branch 
points. Secondly, we compute the residue of the simple pole 
and numerically compute the rest of the residues and the 
complex integrals. We first consider an elastic slug 
impacting a viscoelastic rod  where 0 , 0 , 0 , 

0 , then we consider the slug is viscoelastic and rod is 

elastic where 0 , 0 , 0 , 0  and lastly we 

consider that both materials are viscoelastic where 0 , 

0 , 0 , 0 . 

 Considering the first case where the slug is elastic and the 
rod is viscoelastic, the Laplace transform of the stress in the 
slug is given by equation (24) and putting  1

c

V  and 

considering the general solution of the slug displacement 
equation (29), the solution (24) in the case when a  
gives 
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In order to find the stress as a function of time, we have to 
invert the solution (31) and we employ the complex 
inversion formula [4]. 
 

VI.  VISCOELASTIC DISCONTINUITY 
Assume there are discontinuities in ,v


,  and   

across the surface U
dt

dx
 . Let v ,  and   denote 

velocity, strain and stress, respectively behind the moving 

surface U  while v ,  and   denote velocity, strain 

and stress, respectively ahead of the moving surface. As the 
surface moves, we consider the change of momentum 
between the times t  and tt   where the velocity of the 

mass tAU changes from v  to v  to give the change as 

  tvvUA
    . The change of the momentum, must 

equal the impulse of the net force which gives 

    tvvUAtA
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We non-dimensionalise equation (32) and obtain 
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Considering equation (3.11) in Musa [6] and replacing U  
by U , we obtain 
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Substituting f by u  in equation (35) gives 
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Considering equation (3.16) in Musa [6] for the non-
dimensional stress-strain relation of  viscoelastic material 
and replacing  ,  and c  by  ,  and c  respectively, 

we obtain 
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Eliminating    and    in equations (34), (36) and (37) 
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Considering from equation (3.19) to (3.23) in Musa [6], we 
obtain 
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Further simplification, reduces equation (39) to 
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1
2

                   (40) 

Equation (40) integrates to give the variations of jump in 

 v  as we move with the front, in the form 

                    
t

evv 


2
0



                                           (41) 

Where  0v  is the value of the jump at time 0t . It 

follows from equations (34) and (36) that 

    
t

e 


 2
0



      (42)  and     
t

e 


 2
0



        (43) 

Which agrees with result of Morrison [8]? 
 Applying the result to the impact problem where we solve 
the viscoelastic equations in the rod and slug subject to the 
boundary conditions 
  vv 1        (44)       and          z            (45) 
At impact, we will have a discontinuity in velocity in both 
slug and rod and a discontinuity in stress. From (44) and 
(45), these are given by 

    001 vv        (46)  and     00  z     (47) 

There will be a discontinuity in the slug along U
dt

dx
  and 

in the rod U
dt

xd
  and from the results in equation (34), we 

obtain  

    00 v
c

UV
   (48)  and     02

0 v
c

VU       (49) 

Where 



U  and 



U . Eliminating  0v  gives  

 
*0

1

1

z
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   (50)   and     *0

1 zc

V
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

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and in the rod  

   *
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0
1 z
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 (52)  and    *0
1 z

z

c
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




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Where 



zz * . These results agree with results 

obtained by Musa [6] using the limit theorem (initial value 

theorem) for the Laplace Transform solutions. As the 
discontinuity moves in the slug and reaches the free end 
(X=-1) at time 








1

t
 at which time the magnitudes  

       
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       





 2

*1





 e

zc
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The stress-free condition at X=-1 requires a reflected pulse 
to travel back along U

dt

dx
 with its stress discontinuity 

being equal and opposite to that given by (55). Since the 
discontinuity in v  is now related to that in   by equation 
(34),  v  is still given by equation (54). This reflected pulse 

will reach the interface at time 



2t  at which time the 

jumps in v and   are given by  

  





 e

z
v

*1

1  (56) and   











 e

zc

V
*1

(57) 

 
VII.  THE STRESS IN THE SLUG 

 In this case, our main objective is to determine if and 
when the slug and the rod part company. In order to do that, 
we need to examine the stress at the interface. The Laplace 
transform of the stress in the slug is given by  

    )(
ˆ

ˆ 2 s
dX

ud

c

EV                                           (58) 

Putting the constant 1
c

EV  and considering the general 

solution of the displacement equation (29), the solution (58) 
in the case a  gives 
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             (59) 

In order to find the stress as a function of time, we have to 
invert the solution (59) using complex inversion formula 
[5]. The numerical results of the interface stress in the slug 
for several ratios of acoustic impedances and viscosity time 
constants are shown in Fig. 3 – Fig. 8 [7]. 
 

VIII.  THE VELOCITY IN THE SLUG 
 The velocity at the position x  in the slug is  

    












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t

tXu
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t

x ),(
1                                   (60) 

The Laplace transform of the displacement u  is 
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In order to find the velocity as a function of time, we invert 
equation (61) using complex inversion formula using a 
suitable Bromwich contour curve [5] as shown in Fig. 2. 
Then 
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The numerical results of the interface velocity  in the slug 
for several ratios of acoustic impedances and viscosity time 
constants are shown in Fig. 3 – Fig. 8 [7]. 

 
IX.  IMPACT OF ELASTIC SLUG AND VISCOELASTIC 

ROD 
 In order to make comparisons between the actual results 
and the discontinuity analysis, we consider equation (50) 
and we let 1  or 0 and 0  for elastic slug.  

We predict the initial velocity discontinuity at the interface 
for the case when the slug is elastic and the rod is 
viscoelastic to be 

   




z

v




1

1
11 0 *1

*

z

z


                            (64) 

And the initial interface stress discontinuity to be 

   





z
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1
0 *1

1

z
                                (65) 

The predicted initial interface stress and initial interface 
velocities are shown in TABLE I for several ratios of 
acoustic impedances *z . In TABLE I, we also display the 
initial interface stress and initial interface velocity based on 
the long time acoustic impedances. We calculate them by 
replacing *z  by z  in (64) and (65). 
 Using the results of the elastic slug impacting an elastic 
rod in Appendix I in [6], we can predict the interface stress 
and interface velocity discontinuities at non-dimensional 
time 2t  after the wave rebounds at 1X  and reaches the 
interface. When the slug is elastic and the rod is 
viscoelastic, the predicted interface stress and interface 
velocity discontinuities are calculated by replacing z  by 

z effective, 



zz *  in (I 9) and (I8) in [6], respectively 

and we obtain 
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as the interface stress discontinuity at non-dimensional time 
2t and  
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as the interface velocity discontinuity where  0  and  0v  

are the incoming  waves in the interface stress and interface 
velocity, respectively. The predicted interface stress and 
interface velocity after the wave rebounds at 1X  are 
shown in TABLE II. 
                                             TABLE I 

ISDP = Predicted initial stress discontinuity and 
IPVP =Predicted initial 

particle velocity LTISP and 
LTIVP are predicted initial stress 

discontinuity and initial velocity respectively. 

             

    z
0.9 -0.526 0.474 2 0.636 -0.611 0.389

1 -0.5 0.5 2 0.707 -0.586 0.414
1.2 -0.455 0.545 2 0.849 -0.541 0.459

1.667 -0.375 0.625 2 1.179 -0.459 0.541
2 -0.333 0.667 2 1.414 -0.414 0.586

0.9 -0.526 0.474 5 0.402 -0.713 0.287
1 -0.5 0.5 5 0.447 -0.691 0.309

1.2 -0.455 0.545 5 0.537 -0.651 0.349
2.5 -0.286 0.714 5 1.118 -0.472 0.528

3 -0.25 0.75 5 1.342 -0.427 0.573


 *zLTIVPLTISP ISDP IPVP

 
                                          

            TABLE II 
                   = Predicted stress jump and              = Predicted velocity jump 
at the interface after the wave first rebound at 1X  in the slug for several 
ratios of effective acoustic impedances *z   

                   

   z
0.9 2 0.636 0.747 -0.475

1 2 0.707 0.686 -0.485
1.2 2 0.849 0.585 -0.497

1.667 2 1.179 0.422 -0.497
2 2 1.414 0.343 -0.485

0.9 5 0.402 1.017 -0.409
1 5 0.447 0.955 -0.427

1.2 5 0.537 0.847 -0.455
2.5 5 1.118 0.445 -0.498

3 5 1.342 0.364 -0.489


 *z SIJP JVP 1

 
                                 

X.   DISCUSSION AND CONCLUSIONS 
Fig. 3 shows that as t  increases, the stress settle down and 
show that the initial interface stress discontinuity is between 
the long term initial interface stress, 526.0  and the short 
term initial interface stress , 611.0  when 9.0z  or the 
effective ratios of acoustic impedances 636.0* z  as 
shown in TABLE I. When the viscosity time constants are 

02.0 , 01.0 , the initial interface stress is about 

55.0  which is close to the long term initial interface stress 
and when the viscosity time constants are  

20  and 10 , the initial interface stress  is about  

61.0  which close to the short term initial interface stress.  
Fig. 6 shows that as t  increases, the stress settle 

down and show that the initial interface stress discontinuity 
is between the long term initial interface stress, 455.0  and 
the short term initial interface stress , 651.0  when 

2.1z  or the effective ratios of acoustic impedances 
537.0* z . When the viscosity time constants are 

SIJP JVP 1
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05.0 , 01.0 , the initial interface stress is about 

47.0  which is close to the long term initial interface 
stress and when the viscosity time constants are  

50  and 10 , the initial interface stress  is about  

65.0  which close to the short term initial interface stress.  
The results shown in Fig. 3 – Fig. 8 show that the actual 
initial interface stress is between the long term initial 
interface stress and the short term initial interface stress as 
shown in TABLE I. Moreover the results shown in Fig. 3 – 
Fig. 8 also show that the actual interface velocity is between 
the long time initial interface velocity and the short term 
initial interface velocity. As the viscosity time constants  
 and   increase,  the predicted value in TABLE I 

approximates the initial interface stress initial interface 
velocity better. It is shown in Figures (A3), (A4), (A7) and 
(A8) in [6] that small  values of   and  ,  the material 

undergoes rapid creep and stress relaxation over time scale 
which is short compared with the travel time of a wave in 
the slug. This means that the material effectively behaves 
like an elastic material with the long time elastic constant E .  
For large values of   and  , the strain and stress remain 

virtually constant over the time for the transit of the wave in 
the slug and the material behaves approximately like an 
elastic material with the short time(instantaneous) elastic 
modulus 




E
.  

 Fig. 5 shows that the interface velocity jump at 2t  
when the viscosity time constants are 02.0 , 01.0  and  

2.1z  is about 52.0  and when the viscosity time 
constants, 20  and 10  the interface velocity jump is 

about  5.0 .  However the TABLE II shows that the 
interface velocity jump prediction at non-dimensional time 

2t  when 2.1z  or 849.0* z  and ratio of viscosity time 
constants 2


 , is 479.0 .  Moreover Fig. 4 shows that the 

interface velocity jump at 2t  when the viscosity time 
constants are 05.0 , 01.0  and  9.0z  is about 

46.0  and when the viscosity time constants, 50  and 

10  the interface velocity jump is about  41.0 .  TABLE 

II shows that the interface velocity jump prediction at non-
dimensional time 2t  when 9.0z  or 447.0* z  and ratio 

of viscosity time constants 5

 , is 409.0 .  This shows 

that as we increase the viscosity time constants from 
02.0 , 05.0  and 01.0  to 20 , 50  and 

10 , the prediction approximates the interface velocity 

jump at 2t  better.  
Fig. 5 also shows that the interface stress jump at 

2t  when the viscosity time constants are 
02.0 , 01.0  and  2.1z  is about 40.0  and when the 

viscosity time constants, 20  and 10  the interface 

velocity jump is about  55.0 .  The predicted interface stress 
as shown in TABLE II is 585.0 .  Fig. 4 also shows that the 

interface stress jump at 2t  when the viscosity time 
constants are 02.0 , 05.0 , 01.0  and  9.0z  is 

about 55.0  and when the viscosity time constants, 50  

and 10  the interface velocity jump is about  0.1 . The 

predicted interface stress as shown in TABLE II is 017.1 .  
This shows that as we increase the viscosity time constants 
from  02.0 , 02.0  and 01.0  to 20 , 

50  and 10 , the prediction approximates the 

interface stress jump at 2t  better. Fig. 4 also shows that 
when the viscosity time constants are 05.0 , 01.0  

and 5.0 , 1.0 , the interface stress is decreasing 

rapidly after 2t . However the stress is decreasing gently 
when the viscosity time constants 5 , 1  and 

50 , 10 . This trend of results can be explained by the 

relaxation test in Figure (A8) in Appendix A in [6].  The 
stress response for the relaxation test decreasing rapidly 
when the viscosity time constants are 05.0 , 01.0  

and the viscoelastic material behaves like the long elastic 
material whereas when the viscosity time constants are 

50 , 10 , the interface stress remains constant and the 

viscoelastic material behaves like the short time elastic 
material. Fig. 3- Fig. 6 show that the stress becomes tensile 
at non-dimensional time 2t  when the viscosity time 
constants 02.0 , 01.0  for 9.0z ( 636.0*z ) for 

2

  and 402.0* z  for 5


 ) and 

2.1z 9.0z ( 849.0* z  for 2

  and 537.0* z  for 

5

 ) . However in the elastic impact by R.P. Menday [4], 

the stress is compressive for 1z  at time 2t (it takes 2 
times unit for the wave to travel backward and forward in 
the elastic slug), This implies that the viscosity time 
constants in the rod play an important role in determining 
the stress at the interface as well as the effective ratio of 
acoustic impedances  *z .  When the stress becomes tensile 
at the interface, the solution is no longer valid because the 
slug and the rod will part company. It then becomes 
necessary to initiate waves traveling away from the interface 
in both slug and rod, in such a way as to maintain zero stress 
at the interface.  
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 Fig. 3 For z=0.9 and several viscosity constants 

 
 Fig. 4 For z=0.9 and several viscosity constants 

 
                                           
   Fig. 5 For z=1.2 and several viscosity constants 

 
   Fig. 6 For z=1.2 and several viscosity constants 

                      
      Fig. 7 For z=1.667 and z=2 and several viscosity constants 

 
   

 
      Fig. 8 For z=2.5 and z=3 and several viscosity constants 
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