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Abstract—This paper investigates the performance of the 

Source Affine Image Reconstruction (SAFFIRE) algorithm, on 

Magnetoencephalography (MEG) and Electroencephalography 

(EEG) simulated data. SAFFIRE is based on the direction of 

arrival estimation method known as the Reiterative 

Supperresolution (RISR) algorithm, which belongs to the 

family of iterative minimum norm estimate methods. The 

results are compared with non-iterative weighted minimum 

norm estimate (wMNE) technique to localize brain neural 

activity for MEG and EEG, and to reconstruct the original 

waveform. It is shown that advantages of the SAFFIRE are 

even more pronounced for EEG application than for MEG. 

 
Index Terms—Inverse problem, minimum norm estimate, 

RISR, SAFFIRE 

 

I. INTRODUCTION 

LECTROENCEPHALOGRAPHY (EEG) and 

Magnetoencephalography (MEG) are two popular non-

invasive electrophysiological techniques for recording brain 

activity. EEG measures the electric potential differences on 

the scalp, while MEG records weak magnetic fields outside 

the head.  Brain neurons that produce the abovementioned 

electric and magnetic fields are usually modeled as current 

dipoles.  

Using proper volume conductor models for the head, one 

can obtain the electric/magnetic fields that appear on/outside 

the scalp as a result of such neural activity. This derivation 

is known as the forward problem. The inverse problem, on 

the other hand, is locating neural activity of the brain from a 

specific set of measured bioelectric/magnetic signals. EEG 

and MEG studies are mainly concerned with the uppermost 

layer of the brain, which is the cerebral cortex. 

The inverse problem of bioelectromagnetics is widely 

known as an ill-posed one, with no unique solution. Hence, 

it’s necessary to include a-priori knowledge about the 

current sources to constrain the solution. A famous approach 

which is called equivalent current dipole (ECD) model, 

assumes that neural activity can be represented by a few 

current dipoles [1]. A second approach is the distributed 

source modeling, which assumes the locations of a large 

number of dipoles to be fixed, while their amplitudes and 

orientations are estimated from the measured data [2]. A 

well known technique to constrain this highly 

underdetermined inverse problem is known as minimum 
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norm estimate (MNE). This method searches for a current 

distribution solution with minimum    norm. The main 

problem of MNE approach is the low resolution, and the 

bias it introduces towards superficial sources. Modifications 

of MNE have been proposed, known as weighted MNE 

(wMNE), which rectify the bias issue to some extent [3]. 

But low resolution of MNE and wMNE approaches remains 

a problem. 

To improve spatial resolution, reweighted (iterative) 

minimum-norm algorithms have been developed, which do 

not require a priori knowledge about the number of sources 

and yield sparse (focal) solutions. The recently developed 

Source Affine Image Reconstruction (SAFFIRE) algorithm 

belongs to this family of solutions [4]. The authors of [4] 

utilize the direction of arrival (DOA) estimation method of 

Reiterative Superresolution (RISR) algorithm [5] and apply 

it to MEG signals to retrieve brain electrical source 

location(s).  

In this paper, the performance of SAFFIRE algorithm is 

inspected in comparison with non-iterative weighted 

minimum norm estimate (wMNE) method, for both MEG 

and EEG simulated data.  

Section II of this paper explains the basis of the 

algorithm, the software used for solving the forward 

problem, and the simulation setup. In section III, simulation 

results are presented for MEG and EEG separately. Section 

IV concludes the findings of the paper. 

II. METHODOLOGY 

A. Source Affine Image Reconstruction (SAFFIRE) 
Algorithm [4] 

The algorithm starts by a superposition assumption about 

the independent contributions of   sources to the measured 

signals 

 

                  (1) 

 

where      is an     vector of measurements from   

sensors at time  ;    is the normalized     lead-field 

matrix obtained from the forward problem solution;      is 
an     vector representing amplitudes of   sources at 

time  ; and      is an     vector of zero-mean additive 

Gaussian noise values at time  . Usually      
SAFFIRE searches for the     adaptive filter bank that 

minimizes the mean square error (MSE) cost function 

 

             
 
             

 
    (2) 

 

Setting the derivative of   with respect to   to zero, and 

assuming no correlation between signal and noise, MMSE 

filter bank is derived to be [4] 
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                                   (3) 

 

The spatial power distribution of the source is denoted as 

        . For L snapshots of the data, the algorithm 

starts by computing the initial amplitude distribution using a 

matched filter using (4), and its corresponding initial 

average spatial power distribution using (5) 

 

                                            (4) 

 

     
 

 
                               

               (5) 

 

where   is the Hadamard product. Next, the MMSE filter 

bank is determined using (3).  This filter bank is in turn 

applied to the measured data to obtain the new amplitude 

distribution of sources 

 

         (6) 
 

Steps (3), (5), (6) are repeated until the algorithm reaches 

a stable solution or a certain number of iterations.  Once 

recursion stops, final amplitude distribution is obtained from 

the diagonal elements of average spatial power distribution. 

 

               (7) 

 

The number of sources, their locations and amplitudes are 

estimated via the peaks in   . This algorithm is robust to 

correlation between sources, requires low sample support, 

determines the model order intrinsically and can be 

extended to account for array modeling errors. 

B. Software 

There are several free academic softwares available for 

electromagnetic brain mapping. In a recent paper [6], 

Sylvain Baillet et al. presented a summarized comparison of 

the available features of existing free academic softwares for 

electromagnetic brain mapping using EEG and MEG.   

In the present paper, forward problem calculations are 

performed using Brainstorm [7] for single sphere and 

multiple spheres head models. Source projection on the 

cortex is also demonstrated using the same software. 

C. Simulation Setup 

For both MEG and EEG forward problem calculations, 

the default head anatomy available in Brainstorm has been 

used. This anatomy is based on the Colin27 MRI volume 

provided by the Montreal Neurological Institute (MNI) with 

resolution of 1 mm [8]. The surfaces of the model include 

head, outerskull, innerskull and cortex. Cortex surface is 

divided to 15,010 tessellations, each of which can hold a 

current dipole as the source of neural activity. Each current 

dipole can have 3 strength components associated with it, in 

x, y, and z directions. However, since the pyramidal neurons 

(which constitute approximately 80% of the cortex) are 

organized normal to the local cortex surface, it is usually 

assumed that the dipole direction is perpendicular to its local 

cortex surface [9]. This assumption is also adopted in the 

simulations in this paper.  

Due to the high number of possible source locations 

(15,010) and in order to make the localization process less 

computationally exhaustive, it was assumed that we know 

which quarter of the cortex holds the active source(s) to be 

detected. This assumption can be justified because in most 

practical experiments, depending on the type of the 

stimulation and our knowledge of the cortical mapping (e.g. 

sensory area, motor area, and association area of the cortex), 

it is possible to estimate the primary region of activity in the 

cortex in a given evoked response experiment. The region 

assumed to hold the source is shown with color blue on the 

cortex surface in Fig. 1(a) and Fig. 2(a). 

III. SIMULATION RESULTS 

A. MEG 

CTF Helmet with 151 axial gradiometers is used as the 

sensor array. Neural activity is simulated as a Guassian 

waveform with maximum amplitude of 30 nA.m. White 

Guassian noise with variance of 10fT is added to the 

simulated data. For localization purposes, only 3 snapshots 

(time samples) of simulated recordings are used in the 

SAFFIRE algorithm. Also the grid sampling factor of the 

algorithm is set to 20; i.e. the number of grid points included 

in the iterative search is 20 times the number of the elements 

in the sensor array. 

 

Single Sphere Head Model 

The forward problem is solved using a single sphere head 

model fitted to the cortex. MEG recordings are simulated 

using this head model, and applied to the algorithm to 

localize the underlying source activity. The search was 

conducted on a quarter of the cortex surface (blue). Fig. 1(a) 

shows the localization result for one source (located at -

0.0494 mm, 0.0257 mm, 0.1004 mm on MRI coordinates) 

using SAFFIRE on the single sphere head model. The red 

spot is the location of the source correctly recovered. 

With noise variance of 10fT for each channel and peak 

signal of 30nAm, the array SNR (over all electrodes) in this 

case is 2.7dB. Fig. 1(b) shows the result from localization of 

the same point using weighted minimum norm estimate 

method (wMNE). Even though wMNE is applied with 

privilege of lower noise value, more time samples of the 

recordings, and threshold value of 40%, still the result 

suffers from low resolution. 

Next, in order to investigate robustness of the SAFFIRE 

algorithm to correlation of sources, and also to demonstrate 

high spatial resolution offered in this method, MEG 

recordings are simulated for two fully correlated Gaussian 

sources with a mere distance of 4mm. White Gaussian noise 

with variance of 10fT is added to each sensor, and the 

resulting noisy recordings are passed through SAFFIRE for 

localization. Correctly resolved proximate sources are 

depicted in Fig. 2 (a). In this case, overall (array) SNR is as 

low as -2 dB. At this SNR, no degradation due to correlation 

of sources is observed in the function of SAFFIRE. For 

lower SNRs, however, correlation of sources mandates a 

few more decibels of SNR for the same localization 

performance. 
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(a) 

 

 
(b) 

Fig. 1.  Localization Results for a single source using (a) SAFFIRE, 

MEG/EEG. (b) wMNE, MEG.  

 

Weighted minimum norm results are even further inferior 

for the case of correlated proximate sources (Fig. 2(b)). 

wMNE can not resolve the two sources;  instead it finds a 

patch of the active cortex with an average distance of 9.5 

mm from the first source and 9.1 mm from the second 

source. 

 

Overlapping Spheres Head Model 

This head model fits a sphere to the portion of the head 

that is closest to each MEG electrode when calculating the 

field value at that particular detector [10]. The same settings 

as in the previous section are applied. Source recovery 

results are also very similar to those of the previous section; 

hence not repeated here. 

B. EEG 

GSN 128 EEG cap is used as the sensor array. Similar to 

the MEG case, neural activity is simulated as a Guassian 

waveform with maximum amplitude of 30 nA.m. White 

Guassian noise with variance of 100 uV is added to the 

simulated data at each electrode. For localization purposes, 

only 3 snapshots of simulated readings are used in SAFFIRE 

algorithm, and the grid sampling factor of the algorithm was 

set to 30.  

 
(a) 

 

 
(b) 

Fig. 2.  Localization Results for 2 fully correlated proximate sources (4mm 

distance) using (a) SAFFIRE, MEG/EEG. (b) wMNE, MEG.  

 

Three Spheres Head Model 

The forward problem is solved using Brainstorm’s three 

spheres head model. In this model, three concentric spheres 

represent the cortex, skull and scalp, assuming 

homogeneous and isotropic conductivities for each layer. 

The relative conductivities of the three layers are set to the 

software’s default ratio of 1:1/80:1 (corresponding to 0.33, 

0.004125, and 0.33 S/m). SNR value is set to 0 dB.  

SAFFIRE is used to localize a single source using the 

simulated EEG recordings. The localization result is correct 

and similar to Fig. 1(a), which also formerly demonstrated 

the performance of SAFFIRE on MEG data. Next, wMNE is 

applied to the same set of EEG recordings. Fig. 3 shows the 

reconstructed low resolution patch of cortex using wMNE; 

black spot corresponds to the true source location, which 

SAFFIRE had successfully recovered.  It’s also worth noting 

that performance of wMNE has deteriorated on EEG, 

compared to MEG data. 

Subsequently, SAFFIRE is used on EEG readings to find 

two fully correlated sources, 4 mm apart, with overall SNR 

of -2 dB. The result in this case is similar to Figure 2(a), 

which shows that SAFFIRE resolves the two sources easily.  
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Fig. 3.  Localization Results for a single source, using wMNE, for EEG.  

 

Weighted MNE is then used to recover the same two 

sources. Even with higher SNR, more sample support and 

40% threshold value, still the sources can not be resolved 

using wMNE. Also, both resolution and accuracy in this 

case are inferior to performance of wMNE on a similar 

scenario using MEG data.  

 

Waveform Reconstruction 

In each case (MEG/EEG/single source, two proximate 

correlated sources) SAFFIRE is used to reconstruct the 

original signals of the localized sources (using 26 samples of 

data). The original and reconstructed Gaussian waveforms 

for one of the recovered sources out of two, using EEG 

recordings, are depicted in Figure 5. Other scenarios 

produce similar results. 

 
Fig. 5.  Original and Reconstructed Waveforms using SAFFIRE  

IV. CONCLUSION 

SAFFIRE is an iterative MNE based method that can be 

applied to MEG or EEG recordings to yield sparse solutions 

for inverse problem of bioelectromagnetics. This algorithm 

is robust to correlation of sources, and requires low sample 

support. Comparing localization results with those of non-

iterative wMNE shows that advantages of SAFFIRE are 

even more pronounced for EEG than MEG. The algorithm 

has also been applied to EEG readings for a realistic head 

model, including some calibration errors. The results will be 

presented in a future paper. 

 
 

Fig. 4.  Localization Results for 2 fully correlated proximate sources (4mm 

distance), using wMNE,for EEG. 
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