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Abstract—Particle swarm optimization (PSO) has been proposed
to solve many optimization with good results. However, more
efficient strategies are still needed to control the trade-off between
exploitation and exploration in the search process for solving
complex tasks. In this work, we propose a new PSO approach to
overcome the search difficulties. Our approach focuses on two
search strategies for multimodal functions. One is a cooper ative
strategy that controls search region and integrates partial and full
dimension PSO search. The other isto control the velocity of the
particles in an adaptive way, according to how they move in the
space. Experiments have been conducted to evaluate the proposed
approach, and the results show that our approach can perform
better than other popular PSO variants.

Index Terms—swar m intelligence; particle swarm optimization;
cooper ative strategy; multimodal function optimization

1. INTRODUCTION

Particle swarm optimization (PSO, [1]) has been proposed
as an alternative to traditional evolutionary algorithms (EAs). It
attempts to mimic the goal-seeking behavior of biological
swarms. In PSO, a possible solution of the optimization
problems is represented as a particle and the algorithm operates
in an iterative manner. Unlike traditional EAs, particles in PSO
do not perform the operator of genetic recombination between
particles, but they work individually with social behavior in
swarms. PSO has some attractive characteristics. In particular, it
has memories, so that knowledge of good solutions can be
retained by all particles (solutions). This method has been
successfully used to solve many discontinuous and complex
problems with good results [2][3].

As can be observed, when an application task involves many
parameters and the parameter dimension increases to match the
increase in task complexity, the solution space grows
exponentially. Consequently, the search becomes more and
more difficult. Though different modified PSO algorithms have
been proposed to give better solutions than the standard PSO
does, their search quality declines soon for complex tasks with
high dimensional and multimodal objective functions. In
addition, as the distribution and density of these optimal
solutions vary from function to function, it is difficult to design a
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general or universal strategy for all problem situations. This is
mainly because of that PSO has a high convergence speed and
this often results in the loss of diversity during the optimization
process. The undesirable premature situation causes particles to
get trapped in local optimums and unable to gain the best
solution. Therefore, an efficient strategy to well-control the
trade-off between exploitation and exploration in the search
process is still under investigation.

To overcome the search difficulties described above, in this
work we propose a new PSO approach with two special features:
dimension partition and adaptive velocity control. Dimension
partition is to control search direction and region. It involves a
cooperative strategy that concurrently exploits the advantages
of both single dimension and full dimension PSO algorithms.
And adaptive velocity control means to dynamically regulate the
flying speed of the particles, according to how they move in the
space. To verify the proposed approach, extensive experimental
runs have been conducted and comparisons between our
approach and some famous PSO variants have been made. The
results confirm the performance of our approach. They show
that the proposed approach performs the best in most of the test
functions, especially when the test functions are rotated to
increase the complexity.

II. BACKGROUND

Similar to other EAs, PSO is also a population-based
technique. The basic PSO algorithm contains a set of particles
and operates in an iterative manner. Each particle is
characterized by its position and velocity, which moves in the
search space. The position of each particle represents the
potential solution and is evaluated by a predefined evaluation
(fitness) function. During the iterative search process, each
particle remembers its previous best position and the best
position of any particle in the swarm. Then, the particle uses the
above position information to modify its position and velocity,
and continues its movement in the search space.

To enhance the performance of individuals, the main
operator in the PSO is velocity updating for the particles, which
combines the best position obtained by the swarm of particles
and the best position reached by a certain particle during its
flying history. It has the effect that the particles move towards
the best position of the swarm. In the original PSO, the velocity
and the position of a particle at time step t+1 are updated from
those at time step t by the following rules:
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L+l

Via' =Vig +G1 (Plg = Xg) + ol (Pgg —Xa)
Xg' =Xq+Vg

In the above equations, Vig and X4 are the velocity and
position of particle i at dimension d (1 < d < n, n is the
dimensionality of the search space) and piq is the previous best
position of particle i, while pyq is the best position of the swarm.
The coefficients ¢, and C, are two positive acceleration
constants used to scale the contribution of the cognitive and
social components; they are often determined empirically. In
addition, ry and r, are random values within the range [0, 1]. The
products ¢;r; and C,r, thus stochastically control the overall
velocity of a particle. With a newly obtained velocity, the
position of a particle is then updated accordingly. In addition, a
maximal flying speed Vi is often used to restrict the flying of
the particles.

To balance the effect between local and global search, Shi
and Eberhart proposed to use a weighting factor with value
between 0 and 1 in the velocity rule [4], which was then
modified as:

Vig' =Wy +G 1 (P _)ﬁtd)+czrzt(ptgd ~ %)

In the above equation, W is the inertia weight, which controls
the momentum of the particle by weighting the contribution of
the particle’s previous velocity (i.e., the influence of the
memory). In addition, Clerc and Kennedy introduced a
constriction factor to the above equation to further control the
flight of the particles [5]. It is to constrict the velocities of
particles and achieve the exploration-exploitation balance
during the search and to guarantee that the particles converge to
a stable point. The velocity updating rule then became as the
following in which y is the constriction factor and ¢ is a
parameter often used to control the convergence characteristics
of the PSO:

t+1

Vig! = 2 (W + G (Pl — %) + Czrzt(p;d - %))
1:2/‘2_(]5_ / 2_4¢‘ where p =C, +C,, 0 >4

As can be observed, the above velocity control rule can be
easily modified to fulfill the specific requirements of different
applications, and there have been a large amount of PSO
variants proposed to solve the relevant problems. Without
losing generality, in the following we will take the perspectives
of dimension and landscape of solution space to analyze several
most efficient and relevant PSO methods. One important and
most relevant variant is the cooperative PSO (CPSO, [6])
method that performed dimension partition of solution space to
reduce the search complexity. CPSO originated from the
cooperative coevolutionary genetic algorithm (CCGA, [7]), in
which partial solutions were derived from the decomposed
sub-spaces and then combined together to form the complete
solution. CPSO includes two versions, CPSO-S and CPSO-H.
CPSO-S is a direct application of Potter’s CCGA on the original
PSO, while in the enhanced version, CPSO-H, the authors
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alternately performed the one dimensional search and the
original PSO (full dimensions) search to obtain better results.

The other type of variants is to take into account the particle
performance and the integrated effect of particles in the swarm,
rather than to consider only the effect of best particle. For
example, the fully informed PSO (FIPS, [8]) took the way of
weighted sum of all particles to update velocity of a certain
particle in the rule described above. In fitness-distance ratio
PSO (FDR-PSO, [9]), the authors chose to update one particle
for each dimension to overcome the counteraction effect in FIPS.
Also, Liang et. al presented a new method called comprehensive
learning PSO (CLPSO, [10]) that randomly selected a particle
as the target model rather than to select the best particle in the
swarm. The experimental results have shown that this method
and FIPS can only solve multimodal problems, rather than
unimodal problems. In addition, some PSO variants developed
performance-based strategies to re-organize particles in the
same swarm to try and alleviate premature convergence, for
example adaptive PSO (APSO, [11]) and efficient population
utilization strategy PSO (EPUS, [12]).

III. THE PROPOSED APPROACH

To enhance the PSO performance, we present a new
approach for the optimization of multimodal functions. Our
approach includes two major steps. The first step is to deal with
high dimensional multimodal problems through a two-swarm
cooperative strategy that improves the original PSO search from
different viewpoints. And in the second step, an adaptive
strategy is developed to dynamically control the particle
velocity during the optimization procedure. The details are
described in the following.

A. Dimension Partition

As mentioned above, the search complexity increases
dramatically when the search space grows exponentially along
with the increase of problem dimension. Especially when the
dimensions are not independent (they rely on one another), the
search becomes even more difficult. One promising way to
tackle this scalability problem is to exploit the principle of
cooperative search, which is to separately search different
dimensions (regions) and then integrate the results. Therefore,
inspired by the CCGA and CPSO methods, we develop a new
two-swarm PSO to deal with high dimensional multimodal
functions and their variants (rotated or/and shifted functions).

In our PSO approach, the swarm is divided into two parts:
group-A and group-B. The original PSO computation is applied
to group-A to conduct full dimensional global search. In
addition, a single dimension PSO is developed and performed
on group-B, in which the particles search only one dimension at
a time. The dimension to be searched starts from the first one,
and then takes turn in a cyclic manner. A communication phase
is also designed for information sharing (i.e., to exchange the
best results of the two groups). Different from the CPSO method
in which the algorithms (one full dimension PSO and one single
dimension PSO) for the two swarms perform the search
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sequentially, the two PSO groups in our approach work
concurrently. Most importantly, in our approach, group-A and
group-B continuously operate for a certain number of iterations
before the communication happens, whereas in CPSO, the two
swarms exchange results very frequently (i.e., after each
iteration). It should be noted that the frequent communication
often causes the premature convergence: situation in which
particles are trapped to local minima, and this problem is
especially serious in the functions with interdependent
dimensions (variables). According to our design, during the
search period before the communication phase, the single
dimension PSO for group-B searches the same dimension so
that the solutions can be improved progressively and stably.

Fig. 1 illustrates the flow. As can be seen, when the
communication occurs, group-A duplicates the best solution
(i.e., best-A, represented as a vector (X, X,, ..., Xy)) obtained so
far and sends it to group-B. In each search interval (i.e., k
iterations, and K is 50 in our current implementation, determined
empirically), the particles in group-B take the best solution
obtained from group-A as the context vector (which is required
to provide a suitable context so that each particle in group-B can
be evaluated). Then these particles search for a most appropriate
value X™* in the current dimension d (1 < d < n) to form a
complete solution (X;, Xy, ..., Xdlm, .., Xn). All dimensions will be
searched one by one in turn and in a cyclic manner. That is, for a
n-dimensional problem, the single dimension PSO procedure
needs to continue (kxn) iterations to complete a search round for
all dimensions.

Similarly, the single dimension PSO procedure provides the
best result (derived for the current dimension) of group-B (i.e.,
best-B) to group-A. Then the full dimension PSO procedure
tries to use best-B to substitute the previous best result of each
particle P; (called best) in group-A during its flying history,
depending on whether such a substitution can lead to a better
solution. If there is any performance improvement observed, the
single-dimension PSO for group-B will start the new round and
continue the search along the next dimension. On the contrary,

once none of the particle values in group-A can be replaced
(meaning that the PSO procedure for group-A has reached an
optimal solution, local or global), the single dimension PSO
procedure stops to operate and the particles in group-B are
re-organized. Group-B is divided into two equal parts: one part
(including half of the particles) merged to group-A to perform
local search around the optimal solution found; and the other
part, replaced by random particles to maintain swarm diversity
and then the newly initialized particles perform full dimension
PSO as those in group-A. With the dimension partition strategy
described above, our PSO approach can deal with high
dimensional problems and obtain good results.

B. Adaptive Velocity Control

In addition to the partition of search dimensions for
performing cooperative search, we develop a new adaptive
strategy to control the flying velocity of the particles. As is
well-known, in solving optimization problems, to obtain high
quality solutions (i.e., efficiency) in limited time (i.e.,
effectiveness), an iterative search-based approach needs to work
with a well-designed strategy to obtain balance between search
exploitation and exploration. In a PSO-based method,
controlling particle velocity can achieve such a regulating effect,
and the parameter Vi described in Section 2 plays an important
role. With a large Vmax, @ PSO method can better explore the
complete solution space; on the contrary, a small Vi directs the
method to perform a local search. As a result, a PSO method
tends to adopt a higher Vi, value in the early stage of the search
process, and a lower value later. A simple but popular way is to
use a decreasing function (linear or others) to gradually reduce
the Vmax value (e.g., in proportion to the iteration number), and
the corresponding effect has been confirmed [13][14]. However,
a better control strategy is still needed for further performance
enhancement.

In our work, the control strategy is to change the Vyu value
dynamically, depending on how the particles move in the space.
A simple rule is designed to reason the motion status of each
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Figure 1. The main flow of the proposed dimension partition strategy.
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particle, according to how it moves in two consecutive steps.
The rule is to speculate if a particle has flied too fast so as to
miss an optimal position. This occurs when the particle moved
to a better position (i.e., the performance has been improved) at
the last step and then to a worse position at the current step.
Once the motion statuses of all particles have been obtained,
information from all particles is assembled for controlling the
swarm’s behavior. This means when most of the particles (i.e.,
more than half of the particles in the swarm) show the
over-flying situation (i.e., moving too fast), the Vg, value is
decreased to slow down the swarm to perform elaborate (local)
search. The speed decreasing is estimated by the following
equation:

L+

V

_ t
max_axvmax

Here, a is the rate to slow down the swarm. For unimodal
functions that have relatively simple landscapes than
multi-modal functions, a small value @ is more suitable (with a
manifest effect for slowing down the swarm). On the contrary, a
large value is expected for multimodal functions. In this work, a
value of 0.9 is used (determined by the preliminary tests).

To avoid the situation of search stagnation caused by the
monotonic speed reduction, our dynamic strategy also allows
the particles to not only slow down, but also speed up again.
This is achieved by two rules. The first rule is used in the later
stage of the search process, when all particles have moved for a
number of iterations. It is to observe the moving variations
(called Ad; for dimension i, 1 <i < n) of each particle along all
dimensions, at the time of updating the best position of the
swarm (i.e., Pgq). If the current Vi value is smaller than half
(determined empirically) of the maximal variation (i.e., Vimax <
0.5%A0max, Admax = max(Ad;, Ad,, ..., Ad,)) recorded from
certain dimension, meaning that the particle needs to move more
than twice with highest speed in order to reach the global best
position, we can then assume that Vo now has a relatively low
value. In this situation, the rule will scale Vyu up to half of the
maximal variation mentioned above (0.5XAdya). One the
contrary, the second rule suits for all search iterations. In fact, it
is not to increase the current Vo, value, but allows all particles
to exceed the Vi toward a predefined upper limit with a random
probability. In our current implementation, the upper limit is 20
times of the original Vi value, and the probability is 0.2 for the
multimodal functions here. In addition, a minimal velocity Vn
is used in our velocity control strategy to ensure that the
particles can move with a reasonable speed. Here, the Vg, is
defined to be the one tenth of the Vyuy.

IV. EXPERIMENTS AND RESULTS

To verify the proposed approach, we conducted two sets of
experiments to compare our approach with two famous PSO
variants, APSO [11] and EPUS [12], which were recently
published and have been shown to deliver better performance
than most of the other PSO algorithms. Because the
implementation details of these algorithms are not available, in
order to keep the comparisons as objective as possible, we chose

ISBN: 978-988-19252-1-3

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

to collect results (including the results obtained by the above
algorithms and those listed in their reports for performance
verification) directly from their original research reports but not
to re-implement the algorithms. To examine the generality of
our approach, in each set of experiments we have used the same
settings as the algorithms mentioned above, though which were
best-fitted to the individual work but may not be particularly
suitable for ours.

In the two sets of experiments, extensive runs have been
carried out with several multimodal test functions collected
from the literature [11][12]. The functions are summarized in
the Table I. These functions have different aspects and
characteristics. For example, Ackley function (fs) has one
narrow global optimum basin and many minor local optima,
while Schwefel function (f;) has deep local optima that are far
from the global optimum. In the multimodal functions used,
except Rastrigin function (fs5) and Ackley function (fg), the
variables are interdependent so that they become difficult to
solve by simple algorithms (such as relaxation method). To
ensure that there was sufficient correlation between the
variables and to make the functions even harder to solve, some
functions were further rotated from their original forms. The
dimension for each function was 30.

Table I. The multimodal test functions.

fi: Schwefel (original) f5: Rastrigin (original, rotated)

f2: Generalized Penalized 1 (original) fe: Ackley (original, rotated)

f3: Generalized Penalized 2

(original, rotated) f7: Griewank (original, rotated)

fa: Noncontinuous Rastrigin

(original, rotated) fs: Weierstrass (original, rotated)

Special calculations have been conducted to obtain the
evaluation results of the rotated functions. To derive the result
of a parameter vector X in the rotated function of an original
function f, we took the commonly used method indicated in [15]
to generate an orthogonal matrix M for X, multiply M and X to
obtain a new parameter vector y (i.e., Yy = MxX), and then
calculate f(y) as the result. In the experiments, a new orthogonal
matrix was generated for each evaluation, in order to obtain a
more objective performance evaluation. Because each new
parameter Vy; in the vector y was the linear combination of
original parameters (i.e., X;~X,in the vector X), the functions that
can be partitioned and directly solved by performing one
dimension search n times became unsolvable. It thus provided
more extensive performance verification for different
algorithms. The test functions and the types of the functions are
indicated in the appendix.

A. Comparing with APSO

The first set of experiments was to compare our approach
with the APSO algorithm (Adaptive Particle Swarm
Optimization, [11]) which evaluated the particle states
(exploration, exploitation, convergence or jumping out) during
the optimization process and decided the parameter settings
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Table II. The mean and standard deviation of the runs for each test function. All functions are the original type.

Function GPSO LPSO VPSO FIPS I;\[;i% %{\s/lg' CLPSO APSO this work
nean 7009016 962835 -984527  -10113.80  -1086857 959333 -12557.65  -1256950  -12557.64
i std. dev 495.00 45654 588.87 889,58 289.00 441.00 36.20 0.00 35.53
mean 104602 218630  346E-03  122E-31 707630  205E-32 15921  376E-31  157E-32
iz std. dev 316E-02  514E-30  1.89E-02  485E-32 40530  812E-33  193E-21  120E30  4.61E40
nean 155E+01  3.04E+01  213B+01  359E+01  183E+00  328E+01  1.6/E-01  414E16  195E-141
fi std dev  TAOE+00  923E+00  O46E+00  O49E+00  265E+00  6A49E+00  379E-01  145B-15  1.05E-140
mean 307E+01  349E+01 341401 300E+01  239E+00  281E+01  257E-11  580E-15  4.01E-116
5 std.dev  BGSE+00  725E+00  8O7E+00  109E+01  37IE+00  6.42E+00  6.64E-11 10114  216E-115
nean 115B-14  1856-14  140E-14  769E-15  206E-10 852615 201E-12  111E-14  684E-15
fe std. dev 20715 480E-15  348E-15  933E-16  945E-10  179E-15  920E-13  355E-15  637E-16
mean 237602 110B-02 13102  9.04E-04  107E-02  131E02  645E-13  1.67E-02  2029E-03
F std. dev 257B-02 16002  135B-02  278E-03  114E-02  173E-02  207E-13  241E-02  458E-03

(such as inertia weight, acceleration coefficients) accordingly.
Table II lists the functions and the search settings were the same
as in [11]. In the experiments, the number of particles was 20
and the number of evaluations was 200,000. For each function,
30 independent runs were conducted. The mean and standard
deviation are presented in Table I (arranged as in [11]).

In Table II, the results of the first seven PSO algorithms
(including GPSO [4], LPSO [16], VPSO [17], FIPS [8],
HPSO-TVAC 18], DMS-PSO [19], and CLPSO [10]) that have
been used in [12] for performance verification are also listed
here, and the values are taken directly from the APSO article.
The results of our approach are presented in the right-most
column. To compare different algorithms, the best results (i.e.,
means) for each test function are marked in bold for
identification. As can be seen, the proposed approach can give
the best results in 4 (i.e., f,, fy, s, f5) out of the 6 test functions,
and APSO, 1 (i.e., f)). In addition, the small deviations obtained
from the experiments for all test functions also indicate the
stability and repeatability of our approach. These results show
that our approach is very promising for the optimization of
multimodal functions.

B. Comparing with EPUS

The second set of experiments was to compare the proposed
approach with the EPUS algorithm (Efficient Population
Utilization Strategy for PSO, [12]). To conduct an efficient
search, this algorithm created a swarm manager to include new
particles and to remove some invalid particles. It also developed
two information sharing strategies to prevent particles from
falling into the local minimum. According to [12], the EPUS
algorithm has been compared to the standard PSO ([20]) and
three important PSO variants, including CPSO [6], CLPSO [10],
and UPSO [21], on several test functions, and the results
showed that EPUS performed better than other methods.

In this set of experimental comparisons, the 10 multimodal
test functions, including 5 original and 5 rotated functions, and
experimental settings presented in [12] were used. The number
of particles was 20 and the number of evaluations was 150,000.
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For each test function, 25 experimental runs were conducted. As
presented in [12], the mean and standard deviation for each
function are listed in Table III and different algorithms are
compared (as in [12]). This table shows that for the original test
functions, EPUS performed better on f;, and fs;, and our
approach was better on fg. Though EPUS seems to have better
results than the proposed approach also on f; and fs, the zero
standard deviations reveal that the tiny performance difference
of the two approaches on the two functions is likely to be caused
by the value precision rather than the algorithms. As for the
rotated functions, our approach obviously outperformed EPUS
(and others). The proposed algorithm gave the best results on 3
(fs, fs and fg), and EPUS, 2 (f; and f;) out of the 5 rotated
functions. These results indicate the effectiveness and superior
performance of the proposed approach.

V. CONCLUSIONS

Traditional PSO algorithm has a high convergence speed
that often results in the loss of diversity during the optimization
process. It needs to be improved in order to solve tasks with high
dimensional multimodal objective functions. In this work, we
propose a new cooperative PSO approach to overcome the
search difficulties. For multimodal functions, our approach
performs dimension partition that involves a cooperative
strategy to integrate partial and full dimension search techniques.
The hybrid search strategy can exploit the merits of both
techniques to solve the scalability problem and find solutions
for functions with large amount of interdependent variables. In
addition, an adaptive velocity control strategy is developed. It
calculates the motion status of each particle to dynamically
speed up and slow down the particles. To evaluate the proposed
approach, two sets of experimental comparisons have been
conducted. The experimental comparisons were carried out in a
peer-to-peer manner, and in each set of experiments, the PSO
parameters were set to fit in the algorithms to be compared. The
preliminary results show that our approach still outperformed
others in most of the test cases.
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[10]

[11]

[12]

Table III. The mean and standard deviation of the runs for each test function.

Type Function CLPSO CPSO urso PSO-2006 EPUS this work
mean 1.62E+03 2.58E+08 1.34E+01 2.91E+01 1.35E-32 1.46E-32
f3 std. dev 5.92E+03 4.41E+08 2.34E+01 2.93E+01 5.47E-48 3.20E-33
mean 2.02E-07 8.84E-11 8.40E+01 1.03E+02 0.00E+00 9.77E-65
f4 std. dev 2.35E-07 2.21E-10 1.62E+01 4.16E+01 0.00E+00 4.78E-64
original f% mean 1.87E-09 3.15E-10 7.63E+01 7.73E+01 0.00E+00 2.69E-73
i std. dev 5.34E-09 1.05E-09 1.45E+01 1.93E+01 0.00E+00 1.32E-72
mean 9.90E-14 3.90E-06 1.33E+00 7.77E+00 3.91E-15 6.96E-15
f6 std. dev 3.80E-14 5.98E-06 8.58E-01 2.09E+00 1.07E-15 0.00E+00
mean 2.06E+00 4.12E+00 1.94E+00 8.97E-01 3.21E-02 7.46E-05
f8 std. dev 4.80E-01 1.72E+00 1.13E+00 8.40E-01 8.11E-02 1.69E-04
mean 4.36E-01 1.09E+06 2.77E+00 6.98E+00 1.35E-32 3.46E+01
'ﬁ Std. dev 5.55E-01 2.37E+06 6.22E+00 8.65E+00 5.47E-48 5.77E+01
mean 4.05E+01 8.38E+01 9.09E+01 1.06E+02 3.03E+01 3.73E+01
f4 std. dev 7.91E+00 2.68E+01 1.94E+01 2.84E+01 1.11E+01 1.70E+01
rotated f5 mean 4.70E+01 9.52E+01 7.70E+01 8.17E+01 3.76E+01 3.60E+01
std. dev 6.85E+00 2.93E+01 1.70E+01 2.09E+01 1.48E+01 1.17E+01
mean 2.22E-06 1.52E+00 1.63E+00 6.76E+00 6.81E-01 6.30E-07
f6 std. dev 8.29E-06 8.30E-01 9.49E-01 2.28E+00 1.02E+00 2.27E-06
mean 1.51E+01 1.36E+01 2.02E+01 1.72E+01 4.26E+00 1.95E+00
fS std. dev 1.93E+00 3.56E+00 4.19E+00 3.52E+00 2.97E+00 1.52E+00
REFERENCES [13] J. F. Schutte and A. A. Groenwold, “Sizing design of truss structures
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