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Abstract—Pulse compression technique combines the high
energy characteristic of a longer pulse width with the high
resolution characteristic of a narrower pulse width. The major
aspects that are considered for a pulse compression technique
are signal to sidelobe ratio (SSR), noise and Doppler shift
performances. The traditional algorithms like autocorrelation
function (ACF), recursive least square (RLS) algorithm,
multilayer perceptron (MLP), radial basis function (RBF) and
recurrent neural network (RNN) have been applied for pulse
compression and their performances have also been studied.
This paper presents a new approach for pulse compression
using recurrent radial Basis function (RRBF) neural network.
13 and 35-bit Barker codes are taken as input to RRBF network
for pulse compression and the results are compared with MLP,
RNN and RBF network based pulse compression schemes. The
analysis of simulation results reveals that RRBF yields higher
SSR, improved noise performance, better Doppler tolerance and
hence more robust for pulse radar detection compared to the
other techniques.

Index Terms—Pulse compression, SSR, Doppler shift, RRBF,
Barker code.

I. I NTRODUCTION

Pulse compression plays a significant role in radar
systems in achieving good signal strength and high range
resolution. The good signal strength is achieved by long
duration pulses, which reduces the peak power. Transmitting
longer pulse increases the sensitivity of radar system by
increasing the average transmitted power. But the longer
pulse deteriorates the range resolution of the radar. For
limited target classification, range resolution should be high
enough which is obtained by narrow pulses. Hence as a
compromise, pulse compression technique is employed in
which a long duration pulse is either frequency or phase
modulated to increase the bandwidth. This long duration
modulated pulse is compressed at the receiver end using
matched filter [1]. The SSR, noise and Doppler tolerance
performances must be considered as major performance
indices for a pulse compression technique. Based on these
considerations many pulse compression techniques have been
evolved.

Zrnik et. al [2] proposed a self-clutter suppression filter
design using the modified recursive least square (RLS)
algorithm which exhibits better performance as compared to
iterative RLS and ACF algorithms. To suppress the sidelobes
of Barker code of length 13, an adaptive finite impulse
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response (FIR) filter is placed next to a matched filter pulse
[3] and the filter is implemented via two approaches: Least
Mean Square (LMS) and RLS algorithms. Kwan and Lee [4]
used an MLP network for pulse radar detection to suppress
the unwanted clutter. A RNN approach which yielded better
SSR than MLP and autocorrelation approach is reported in
[5]. Khairnar et. al [6] developed a RBF network which
converges faster with higher SSRs in adverse situations of
noise and better robustness in Doppler shift tolerance than
MLP and other traditional algorithms like ACF algorithm. In
recent literature there are other better performing algorithms
which can be replacement for these traditionally used
algorithms for pulse compression. It becomes interesting to
examine the scope of further improvement in performance
in terms of SSR, error convergence speed and Doppler shift
in pulse compression system. In this paper, a new approach
for radar pulse compression which uses RRBF is proposed.
The simulation studies of the proposed technique are carried
out to obtain various performance indices and the results of
simulation are then compared with those obtained by RBF,
RNN, MLP and ACF based pulse compression systems.

This paper is organized as follows. Section II discusses on
the RBF and RRBF network and their learning algorithm. In
Section III the performance of RRBF network is compared
with those obtained by ACF, MLP, RNN and RBF. The
concluding remarks are provided in Section IV.

II. RBF AND RRBF

A. Radial basis function

The radial basis function network can be viewed as a feed
forward neural network with a single hidden layer which
computes the distance between input pattern and the center
[7]. It consists of three layers, an input layer, a hidden layer
and an output layer. The input layer connects the network to
the environment. The second layer is the only hidden layer
which transfer the input space nonlinearly using radial basis
function. The hidden space is greater than the input space
in most of the applications. The response of the network
provided by the output layer which is linear in nature. The
RBF network is suitable for solving function approximation,
system identification and pattern classification because of its
simple topological structure and their ability to learn in an
explicit manner [8], [9].

The basic architecture of RBF network is shown in Fig.
1. Herex(n) = [x1(n), x2(n), .....xN (n)]T is the input to
the network andφ represents the radial basis function that
perform the nonlinear mapping andM represents the total
number of hidden units. Each node has a center vectorck

and spread parameterσk, wherek = 1, 2, ....M .
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Fig. 1. Architecture of radial basis function network

Learning algorithm for RBF network
The error for thenth pattern is obtained as

e(n) = d(n) −

M
∑

k=1

wk(m)φ (x(n), ck(m), σk(m))) (1)

whered(n) is the desired output. If the Gaussian function
chosen as the radial basis function

e(n) = d(n) −
M
∑

k=1

wk(m)exp

(

−
‖x(n) − ck(m)‖

2

σ2

k(m)

)

(2)

The cost function is defined as

ξ =
1

2

n1
∑

n=1

e2(n) (3)

wheren1 is the number of training patterns. It is required
to adjust the free parameters such as weight, center and
spread so as to minimizeξ. According to the gradient descent
algorithm the free parameters formth epoch are updated as

wk(m + 1) = wk(m) − µw

∂ξ

∂wk(m)
(4)

ck(m + 1) = ck(m) − µc

∂ξ

∂ck(m)
(5)

σk(m + 1) = σk(m) − µσ

∂ξ

∂σk(m)
(6)

where µw, µc and µσ are learning parameters andk =
1, 2...M . Finally the updation equations are defined as

wk(m + 1) = wk(m) +

n1
∑

n=1

µwe(n)φ (x(n), ck(m), σk(m))

(7)

ck(m + 1) = ck(m) +

n1
∑

n=1

µc

e(n)wk(m)

σ2

k(n)

φ (x(n), ck(m), σk(m)) [x(n) − ck(m)] (8)

σk(m + 1) = σk(m) +

n1
∑

n=1

µσ

e(n)wk(m)

σ3

k(m)

φ (x(n), ck(m), σk(m)) [‖x(n) − ck(m)‖
2
] (9)

where

φ (x(n), ck(m), σk(m)) = exp

(

−
‖x(n) − ck(m)‖

2

σ2

k(m)

)

(10)

B. Recurrent radial basis function

The RRBF [10] combines the advantages of RBF and
dynamic representation of time. The RRBF network has
been applied for modeling [11], noise cancellation [12], [13]
and time series [14] prediction. This network has faster
convergence [15] while maintaining the modeling capability
of neural networks. The architecture of RRBF model is

Fig. 2. Architecture of recurrent radial basis function network

shown in Fig. 2. The model of RRBF is similar to RBF
with an input layer, one hidden layer and an output layer. In
this network each output of the hidden neurons are fed back
to their corresponding input through a delay. The estimated
output of the network fornth pattern is

y(n) =

M
∑

k=1

wk(m)φ (x(n), ck(m), σk(m)) (11)

where

φ (x(n), ck(m), σk(m)) = exp
(

−
‖x(n) − ck(m)‖

2

σ2

k(m)
+ gk(m)φ (x(n − 1), ck(m), σk(m))

)

(12)

Learning algorithm for RRBF
In this case the cost function is same as that of RBF as
defined in (3).wk, ck and σk are updated as that of RBF
using the currently definedφ (x(n), ck(m), σk(m)). The
recurrent weights are updated as

gk(m + 1) = gk(m) − µg

∂ξ

∂gk(m)
(13)

whereµg is the learning parameter.

∂ξ

∂gk(m)
=

n1
∑

n=1

wk(m)φ (x(n), ck(m), σk(m))

φ (x(n − 1), ck(m), σk(m)) (14)

From (13) and (14)

gk(m+1) = gk(m)−µg

n1
∑

n=1

wk(m)φ (x(n), ck(m), σk(m))

φ (x(n − 1), ck(m), σk(m)) (15)

wherek = 1, 2...M .
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III. S IMULATION RESULTS

This section illustrates the performance of various
networks for radar pulse compression. The results of MLP
and RNN are also presented for comparison purpose. All
the networks are trained with time shifted sequences of the
13-bit and 35-bit Barker codes.The desired output of the
pulse compression filter for an input sequence is modeled
as a all zero vector except at one point at which the desired
response is nonzero corresponding to the presence of the
target.

The MLP and RNN consist of input layer one hidden layer
and output layer. The log-sigmoid function is used as the
activation function in hidden and output layers. The number
of input neurons are same as the length of the input code i.e.
13 for 13-bit Barker code and 35 for 35-bit Barker code. The
number of hidden layer and output layer neurons are chosen
as three and one respectively. The weights and the biases are
randomly initialized. The RBF and RRBF consist of seven
hidden neurons having Gaussian radial basis function and one
output neuron is used. Weight(w), centre(c) and spread (σ)
parameters are randomly initialized. The values of learning
parametersµw, µc and µσ for RBF are chosen as 0.75,
0.8 and 0.75 respectively. Similarly the values of learning
parametersµw, µc, µσ and µg for RRBF are chosen as
0.8, 0.8, 0.75 and 0.8 respectively. All the four networks are
trained for 500 epochs according to their learning algorithms.
After completion of the training, the neural network can be
used for pulse radar detection by using various set of input
sequences.

1) Convergence performance:The mean square error
(MSE) of all the networks for 13-bit and 35-bit Barker codes
are depicted in Fig. 3. From the figure it is evident that the
RRBF based approach offers better convergence speed and
very low residual error after training for 13-bit and 35-bit
Barker codes as compared to all other networks.

2) PSR performance:It is defined as the ratio of peak
sidelobe power to the mainlobe power. After the training is
over, different inputs are applied to the networks to examine
PSR performance. The compressed output of different
networks for 13-bit Barker code is shown in Fig. 4. The
PSR values of all the networks for 13-bit and 35-bit Barker
codes are listed in Table I. The table shows that the proposed

TABLE I
PSRS OBTAINED BY VARIOUS STRUCTURES

Structures 13-Bit Barker Code 35-Bit Barker Code
(PSR in dB) (PSR in dB)

MLP 42.61 40.87

RNN 45.75 44.93

RBF 60.43 56.42

RRBF 64.31 62.35

RRBF network have achieved highest PSR magnitude for
both 13-bit and 35-bit Barker codes compared to all other
approaches.

3) Noise performance:Noise is a random signal which
interferes with the target echoes. If the noise is very high it
may mask the target echo. So it is also required to examine
the noise rejection ability of different networks. The inputs
having different SNR ranging from 0 dB to 20 dB are applied
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Fig. 3. Convergence graphs of different structures for (a)13-bit (b)35-bits
Barker codes

to the networks and the output PSR for 13-bit and 35-bit
Barker codes are listed in Tables II and III respectively. These
tables show that as the SNR increases the magnitude of PSR
also increases. The RRBF provides highest magnitude of
PSR in all SNR values compared to those obtained by all
other approaches.

TABLE II
COMPARISON OFPSRS IN dB AT DIFFERENT SNRS FOR13-BIT BARKER

CODE

Structures SNR=0dB SNR=5dB SNR=10dB SNR=15dB SNR=20dB
MLP 14.23 28.61 36.71 38.53 39.82

RNN 17.11 32.17 38.35 40.59 41.76

RBF 35.28 45.23 50.33 55.77 57.62

RRBF 40.24 49.27 57.30 60.12 61.24

TABLE III
COMPARISON OFPSRS IN dB AT DIFFERENT SNRS FOR35-BIT BARKER

CODE

Structures SNR=0dB SNR=5dB SNR=10dB SNR=15dB SNR=20dB
MLP 15.18 29.17 32.43 36.95 38.12

RNN 19.52 32.74 37.83 40.87 42.65

RBF 40.25 48.25 52.78 54.44 55.17

RRBF 42.25 54.69 57.47 58.60 60.57

4) Range resolution ability:The range resolution is to
analyze the ability of a particular network to distinguish
between two targets by measurement of their ranges in the
radar system. The two targets which are to be resolved must
be separated by at least the range equivalent of the width of
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Fig. 4. Compressed waveforms for 13 bit Barker code using (a)MLP
(b)RNN (c)RBF (d)RRBF structures

TABLE IV
COMPARISON OF RANGE RESOLUTION ABILITY FOR13-BIT BARKER

CODE OF TWO TARGETS HAVING SAMEIMR AND DA.

Structures 2-DA 3-DA 4-DA 5-DA
(PSR in dB) (PSR in dB) (PSR in dB) (PSR in dB)

MLP 36.53 38.52 37.32 36.16

RNN 40.24 41.23 39.23 38.78

RBF 53.32 55.25 56.76 54.23

RRBF 59.72 58.28 60.73 58.71

TABLE V
COMPARISON OF RANGE RESOLUTION ABILITY FOR35-BIT BARKER

CODE OF TWO TARGETS HAVING SAMEIMR AND DA.

Structures 2-DA 3-DA 4-DA 5-DA
(PSR in dB) (PSR in dB) (PSR in dB) (PSR in dB)

MLP 34.41 34.83 33.75 32.62

RNN 38.23 37.79 36.87 35.25

RBF 48.34 47.61 49.82 47.13

RRBF 53.72 55.14 54.25 53.23

the processed echo. To compare the range resolution ability
two overlapping codes of same length are considered with
n-delay apart (DA) having same or different input magnitude
ratio (IMR). The IMR is defined as the magnitude of first
pulse train over that of the delayed pulse train. Fig. 5 shows
the added input waveform of equal magnitude (IMR=1)
with 5 delay apart for 13-bit Barker code. The compressed
output for this input for all the network are shown in Fig. 6.
In this case the PSR is calculated by taking lower value of
the two mainlobes. By varying the DA from 2 to 5 the PSR
for 13-bit and 35-bit Barker codes are obtained and shown in
Tables IV and V respectively. In Tables VI and VII the PSR
for different IMRs and DAs for all the networks are listed.
From these tables it is evident that the PSR values for RRBF
are the best among those offered by all other networks i.e.
RRBF based pulse compression technique have best range
resolution ability compared to those of other networks.

TABLE VI
COMPARISON OF RANGE RESOLUTION ABILITY FOR13-BIT BARKER

CODE OF TWO TARGETS HAVING DIFFERENTIMR AND DA.

Structures 2-DA 3-DA 4-DA 5-DA
2-IMR 3-IMR 4-IMR 5-IMR

(PSR in dB) (PSR in dB) (PSR in dB) (PSR in dB)
MLP 38.17 30.23 24.16 12.14

RNN 40.23 36.56 31.14 23.65

RBF 51.38 49.42 43.24 33.18

RRBF 56.36 55.42 50.24 39.37

TABLE VII
COMPARISON OF35-BIT BARKER CODE FOR RANGE RESOLUTION

ABILITY OF TWO TARGETS HAVING SAME IMR AND DA

Algorithms 2-DA 3-DA 4-DA 5-DA
2-IMR 3-IMR 4-IMR 5-IMR

(PSR in dB) (PSR in dB) (PSR in dB) (PSR in dB)
MLP 34.46 27.75 21.78 14.54

RNN 39.44 33.23 26.74 20.68

RBF 47.77 45.24 38.21 25.23

RRBF 52.64 48.71 43.41 35.42
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Fig. 5. Input waveform on addition of two 5-DA 13-bit Barker sequence
having same magnitude (a)Left shift (b)Right shift (c)Added waveform
(d)Waveform after flip about the vertical axis
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Fig. 6. Compressed waveforms for 13-bit Barker code having same IMR
and 5 DA for (a)MLP (b)RNN (c) RBF (d)RRBF structures
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TABLE VIII
DOPPLER SHIFT PERFORMANCE

Structures 13-bit Barker code 35-bit Barker code
(PSR in dB) (PSR in dB)

MLP 14.35 28.34

RNN 30.93 42.36

RBF 47.45 46.42

RRBF 55.23 56.34

5) Doppler shift performance:The influence of Doppler
shift should be accounted for evaluating the detection
performance for a moving target. The Doppler tolerance
measures the Doppler sensitivity of the pulse compression
technique. The Doppler sensitivity is caused by the shifting
in phase of the individual elements of the code by the target
Doppler. In extreme case the phase shift across the code will
be 180o, the last subpulse in the received code is effectively
inverted. For 13-bit Barker code at extreme case the input
will change from “1 1 1 1 1 -1 -1 1 1 -1 1 -1 1” to “-1
1 1 1 1 -1 -1 1 1 -1 1 -1 1”. For 13-bit and 35-bit Barker
codes the extreme case Doppler shift PSR values for different
types of network are listed in Table VIII. From this table it is
observed that the MLP has very low Doppler tolerance and
RRBF produces the best PSR value of 55.23 dB for 13-bit
Barker code.

IV. CONCLUSION

In this paper the RRBF is proposed for radar pulse
compression. The simulation results reveal that the
performance of RRBF based pulse compression is much
better than MLP, RNN and RBF based pulse compression
techniques. The convergence rate of RRBF is higher than that
of all other networks and it has low training error. The RRBF
approach provides better PSR values in different adverse
conditions such as noise and Doppler shift conditions. The
range resolution ability of RRBF network is much superior
than MLP, RNN and RBF networks. Although the algorithms
are applied for 13-bit and 35-bit Barker codes, they can also
be used for any other biphase codes.
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