
 

  
Abstract— The construction of a Bayesian Network (BN) 

model entails two major tasks: realization of the model 
structure, and the calibration (parameterization) of the model. 
BN model constructors, ab initio, relied only on domain experts 
to define both the structure and parameters of a model. 
Currently, algorithms exist to construct BN models from data. 
Consequently, there are three BN model construction 
techniques: total expert-centred, total data-centred, and semi 
data-centred. We empirically investigated which of these 
approaches is the optimal approach for the construction of a 
BN model for our intended application. The investigation 
yielded some interesting themes. 
 

Index Terms—Bayesian-network-model-construction, model-
evaluation, model-learning, performance-metrics. 
 

I. INTRODUCTION 

Bayesian Network (BN) model consists of two 
component parts: the qualitative and quantitative. The 
qualitative part is the network structure, which is a set of 

random variables (nodes) and a set of directed edges 
interconnecting the nodes without creating directed loops, so 
that the nodes, together with the edges, form a Directed 
Acyclic Graph (DAG). The quantitative part is the set of 
parameter entries in the Conditional Probability Tables 
(CPTs) and Prior Probability Tables (PPTs) associated with 
each child and leaf node (node without parent), respectively, 
in the BN model. The CPT parameters describe the 
probability distribution of the child node conditioned on 
every possible combination of the values of its parent nodes, 
while the PPT parameters for a leaf describe the prior 
knowledge about the variable modeled by the node. Thus, 
building a BN model involves three ordered tasks: 
identification of the network variables and their possible 
values (states), definition of the relationships between the 
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variables, and model calibration (obtainment of parameters). 
These tasks can be accomplished through three different 
approaches, based on a number of factors. One, all three 
tasks could be accomplished “manually”, which entails 
committed involvement of domain experts. This so called 
manual approach is referred to, in this context, as total 
expert-centred (totalexpertBN) approach. Two, all three 
tasks could be accomplished by "learning", which will 
involve the acquisition of relevant domain data and 
appropriate Bayesian network software tools. This approach 
is referred to, in this context, as total data-centred 
(totaldataBN) approach. Three, all three tasks could be 
accomplished by a combination of "manual" and learning 
approaches, which will entail a limited involvement of 
domain experts and the use of domain data. This approach is 
referred to, in this context, as semi data-centred 
(semiDataBN) approach.  
 These three BN model construction approaches were 
empirically investigated in order to determine the optimal 
approach for the construction of a BN model for the 
intended application, undergraduate electronic engineering 
students' laboratory work performance assessment. The 
motivating factors for the study are two-fold:  

--the need to construct a BN model for performance-based 
assessment of undergraduate engineering students' 
laboratory work and the requirement was to possibly 
construct an optimal model, from a holistic perspective. 

--BN is often preferred over other artificial intelligence 
techniques, because it has a sound mathematical basis, 
enables reasoning under uncertainty, and facilitates the 
update of beliefs, given previous beliefs and new 
observations. Also, BNs facilitate visual representation of a 
model and have proven useful for solving inference-related 
problems. It is strongly believed that results of the study 
would provide additional insight and could constitute a 
significant contribution to literature.  

The paper is organized as follows: section 2 gives details 
of each of the BN model construction approaches; section 3 
highlights the experimental procedure; section 4 presents the 
optimality criteria; section 5 gives the results of the 
investigation and the discussion; and section 6 concludes the 
paper. 

 

II.  MODEL CONSTRUCTION APPROACHES 

A. Total Expert-Centred Approach 

There are no formal foundations for manual BN model 
construction, and the process is still essentially an art [1]. 
Fig. 1 highlights the different stages and key components of 
the totalExpertBN model construction approach. The key 
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player in this approach is the domain expert(s) from whom 
most of the knowledge required for the construction of the 
model is elicited. Domain expert refers to a person with 
special knowledge or skills in a particular area or field [2]. 
In this context, three domain experts (down from an initial 
nine who had their say in the construction of the model 
structure) participated till the end of the research work. The 
reduction from nine to three domain experts was due to 
availability and commitment. 

 
The issues often highlighted about totalexpertBN model 

construction approach are that: 
--Expert knowledge is subject to bias. This issue is 

addressed through the involvement of more than one domain 
expert, and the knowledge elicitation process often goes 
through several stages of review. Also, the elicited model is 
usually subjected to sensitivity analysis which affords 
opportunities for the identification and minimization of bias. 
Furthermore, the issue of bias no longer holds as a range of 
techniques and tools that minimize elicitation effort and 
ambiguity have been developed [3]. Moreover, BN models 
are not overly sensitive to inaccuracies in their parameters 
[4], so determining good parameter values in many 
application areas is quite feasible [5]. 

--Knowledge elicitation can be a relatively time consuming 
and difficult process. Processes, methods, tools, and 
guidelines for easing elicitation have been outlined by 
[6][7][8]. For example, a modified version of the number 
line knowledge elicitation tool was used for the work 
presented in this paper. Fig. 2 shows the number line tool. A 
similar scale was used but linguistic terms were replaced 
with numbers from 0 to 10.  

 

--Experts rarely agree. Experts’ opinion disagreement is 
generally acknowledged [9]. Methods for resolving expert 
opinion conflicts and how to obtain composite or consensus 
opinion are addressed by [9]. 

Expert-centred BN model construction approach offers a 
number of benefits as highlighted by [3][5]: 

--Model variables, their states, and relationships are fully 
appreciated, and the reasoning and rationale behind the 
model can be clearly articulated and communicated.  

--Model creation is often based on the consensus or 
average of information and opinions of more than one 
domain expert, thereby enabling the capture of uncommon 
or rare scenarios and knowledge.  

--The technicalities of the domain represented by the 
model can be verified/discussed in details at each stage of 
the development cycle.  

--Expert probability elicitation codifies knowledge so that 
the knowledge is available in the future for other projects 
and systems thereby promoting reliability in assessment of a 
family of systems that change within a changing usage 
environment.  

 

B. Total Data-Centred Approach 

The total data-centred BN (totalDataBN) model 
construction approach entails the learning of both the model 
structure and parameters from existing domain data. Domain 
historical data are generally the main sources of data for this 
approach.  This approach, represented diagrammatically in 
Fig. 3, is characterized by the representation of a BN model 
as a variable, { , }B G θ= , where G is the network structure 

with nodes corresponding to a set of random 

variables, ( , , )1X X Xm= …… , while θ represents the set of 

parameters (CPT and PPT entries) for the network. B is seen 
as encoding the Joint Probability Distribution 

(JPD), ( ,..., ) ( | ( )1 1

m
p X X p x pa xm i ii

= ∏
=

, where ( )pa xi  represents 

the parent set of node xi. The probability 

distribution, ( | ( ))P x pa xi i , for each discrete node, Xi, is 

represented as a CPT at node Xi in B. The data-centred 
approach entails learning both the structure, G, and/or 
parameters, θ , from a given sample domain dataset. 

 
A dataset, D, is a table consisting of records of 

observations for a set of variables, such 

that, [ , ,......., ]1 2D d d dN= , where N = total number of records 

in D, and {x [ ], x [ ], ......., x [ ]1 2 }d l l lml = Є D, l = 1 to N, 
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Fig. 3: Total Data-Centred (totalDataBN) Approach 
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Fig. 1: Total Expert-Centred (totalExpertBN) Approach (KEY: CTA--
Cognitive Task Analysis; KET-- Knowledge Elicitation Tools) 
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Fig. 2: The number line knowledge elicitation tool       (Source: [6]) 
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represents a record of observation for all the variables, X. 
The variables in D form the nodes of the learnt model. 

Learning Model Structure 

Given the dataset, D, the structure learning process works to 
find the most probable model structure, Gi, from among the 
set of all possible model structures (the search space), with 
respect to the domain variables represented in D. Gi is taken 
to be the model structure that most likely generated the 
dataset, D, which best describes the conditional 
independences suggested in D [10].  

Structure learning algorithms are either based on 
Conditional Independence (CI) tests or Search and Score 
(SaS) technique. The CI approach uses constraint-based 
algorithms to find the structure whose implied independence 
constraints “match” those found in the data by performing 
CI tests on tuples of variables, using statistical tests or 
information theoretic measures [11]. The SaS approach 
consists of three components: the search space, the search 
engine or algorithm, and the score function or metric. The 
score metric takes the dataset, D, and the most likely 
structure, Gi, and returns a score reflecting the goodness-of-
fit of the data to the structure [12]. The search engine works 
to identify the structure with the highest score through its 
heuristical comparative exploration of the search space [13]. 
The dataset D, the scoring function, and the search space 
constitute the inputs to the search algorithm while the output 
is a network that maximizes the score, P(D|Gi), the 
probability of the most probable structure, Gi, given the 
dataset, D [14].   
 An issue related to the data-centred approach is that 
structure learning is NP-hard [15]. There have research 
efforts to reduce the complexity of BN structure learning by 
various algorithmic means, but the problem remains 
complex and hard, without exact and exhaustive solution 
[11]. Consequently, heuristic algorithms are often employed 
for the learning process, which may produce an acceptable 
solution to a problem, in many practical scenarios, but is not 
certain to arrive at an optimal solution.  Another issue is that 
the number of possible structures grows super-exponentially 
with the number of variables, n, in the dataset, D [11]. For n 
variables, the cardinality of the search space is given by [16] 
as the recursive function: 

( ) ( ) ( ) ( ) ( )1
1 2

1

n k n kk nf n f n kkk

−+
= − −∑

=
, where ( )1 1f = .  

  

Learning Model Parameters 

In parameter learning, the structure, G, is known (already 
learnt or manually constructed) and the problem is to learn 
the parameter,θ , from the given dataset, D. That is, the 

estimation of  { } 1,...,i i mθ θ= = , from D, given G, where θi is the 

set of numerical value entries in the CPT of node Xi. θ is the 
complete set of parameters that can best explain the set of 
observations in D [17]. Parameter learning could involve 
learning single or multiple parameters. Single Parameter 
Learning implies that the variable, Xi, has only two possible 

mutually exclusive states denoted, xi  and xi , such that the 

probability mass function P(Xi) is defined by: ( )p X xi i iθ= =  

and ( ) 1p X xi i iθ= = − . Let r be the number of possible states 

of the variable, Xi. Multinomial Parameter Learning implies 
that Xi is a multinomial variable with  2r >  possible states, 

,......., ,1x x ri i  such that Xi has the set of 

probabilities, ( ,......., )1 ri i iθ θ θ= , respectively, where 1
1

r
ikk

θ =∑
=

.  

  

C. Semi Data-Centred Approach 

The semi data-centred approach, which scenario is 
depicted graphically in Fig. 4, entails the use of domain data 
and the limited involvement of domain expert(s). Fig. 4 
highlights two different possible paths, (a) and (b), of the 
semiDataBN approach. Path (a) indicates that it is possible 
to construct the model structure manually with assistance of 
domain experts, while the parameters are learnt from data. 
Path (b) indicates that it is possible to first learn the model 
structure from existing domain data, while the parameters 
are derived from knowledge elicited from domain experts. 
For both paths, the structure and parameter learning 
processes described earlier apply. 

III.  EXPERIMENTAL PROCEDURE 

This investigation entailed the construction of several BN 
models using the three different construction approaches. 
The total expert-centred model was constructed first, with 
the committed participation of three domain experts (down 
from the initial nine from the start of the research work). The 
foundational framework of the model was anchored on 
Psychology of Learning, which is focused on understanding 
how the learning process (often depicted as learning theories 
and models) works and the effect of learning on behaviour. 
Learning theories and models are ideas about how learning may 
happen (conceptualization of the learning process), and are 
meant to be applied in the instructional process, in order to 
facilitate learning by instruction and assessment [18]. 
Assessment drives learning [18]. The framework (depicted 
graphically in Fig. 5) is consistent with the definition of 
assessment, by [18], as a generic term for a set of processes that 
measure the outcomes of learning, in terms of knowledge 
acquired, understanding developed and abilities/skills gained, 
because of the intended application domain of the model -- 
undergraduate electronic engineering students' laboratory 
work performance assessment. 
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Fig. 4: Semi Data-Centred (semiDataBN) Approach 
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In order to build on the framework, Cognitive Task Analysis 
(CTA) technique was used to breakdown each of the three 
core component variables (Abilities/Skills, Knowledge, and 
Understanding) of the framework (knowledge, understanding, 
abilities/skills) into their constituent constructs. Essentially, 
the CTA process was used to facilitate elicitation of 
knowledge from domain experts. Descriptions of the core 
variables, with respect to the performance of laboratory 
tasks within the context of the domain, were elicited and 
used to develop the model. As part of the CTA process, 
laboratory instruction manuals, and laboratory work 
assignment sheets were reviewed, students undertaking 
laboratory activities in the traditional laboratory 
environment were physically observed, in addition to the 
knowledge elicited from the domain experts. The end product 
of the CTA process was the structure for the totalExpertBN. 
The parameters were then derived from the relevant part of the 
knowledge elicited from the domain experts. The resulting 
model, totalExpertBN, served as the reference model for the 
investigation.  
 Sample domain datasets and a Bayesian network software 
tool were required for the construction of a total data-centred 
(totalDataBN) model. There are two possible sources of 
sample data: domain historical data, and/or empirically 
generated data. Where data from such sources are not 
available, which was the case in this context, the alternative 
is the use of simulated sample data.  Often, researchers 
needing to undertake empirical investigations, with respect 
to structure and/or parameter learning, create frameworks 
that would facilitate the generation of the required sample 
data from the Joint Probability Distribution (JPD) 
represented by an existing reference model. Along this line, 
the bare structure (structure minus parameters) of the 
totalExpertBN was used to generate two sample datasets, 
one training dataset (TDSMP dataset), and one test dataset, 
TD. A second training dataset (TDSPP dataset) was 
generated with the complete (structure plus parameters) 
totalExpertBN model. This facilitated the construction of 
two different totalDataBN models: totalDataBNSMP and 
totalDataBNSPP, using the Bayesian network software tool, 
Genie [20], Genie is the graphical interface to SMILE [20], 
a Bayesian inference engine. Genie supports both structure 
and parameter learning. 

 Construction of the semiDataBN was based on both 
paths (a) and (b) of Fig. 4. Two instances of the 
totalExpertBN model structure was used to construct two 
semiDataBN models, based on path (a), by learning their 
parameters using the training datasets, TDSPP and TDSMP, 
and the Bayesian network software tool, Genie [20]. 

 

IV.  MODEL EVALUATION  

The different types of BN model evaluation studies include: 
verification, reliability, validation, and performance check. 
Verification is concerned with knowledge elicitation review, 
functional verification, and sensitivity analysis. Review and 
refinement are usually inherent parts of the knowledge 
elicitation process. Functional verification entails checking 
that a piece of evidence entered at an evidence node is 
properly propagated through the network. Sensitivity 
analysis (SA) is a technique for systematically investigating 
the effects of variations in inputs on a model’s output.  There 
are two types of SA: sensitivities oriented to evidence 
(evidence-based analysis) and sensitivities oriented to 
parameters (parameter-based analysis) [21]. Evidence-based 
analysis determines the variables that have the highest or 
lowest impact on the belief estimation of a target variable, X, 
while parameter-based analysis measures the impact of 
changes in the parameters of a node, A, on the probability 
distribution of a target node, X. Often, only one of these two 
types of analysis, mostly evidence-based analysis, is 
employed in any one study,.  Verification study affords 
opportunities for bias minimization in the elicited 
knowledge. Reliability and validity studies are most 
appropriate for models geared towards the evaluation of 
students' assessment scenarios. Performance checks, which 
are of interest in this context, give a picture of a model in 
terms of its success rate, accuracy, and failure rate.  

 Performance verification studies often entail the use of 
a test dataset, from which a select set of variables from each 
record instance constitute evidential variable and their 
values the findings with which to update the model. The 
remaining set of variables from the same record instance 
constitutes the target nodes and their values the known 
observations, with respect to the finding.  The test procedure 
consists of entering evidence at the set of selected evidence 
nodes of a model, and querying the target nodes. For each 
network update, for each record instance in the test dataset, 
the probability distributions of the target nodes are recorded 
and their predictions determined. That is, after each network 
update, the state of each target node with higher belief value 
(the most likely or maximum likelihood state), based on a 
cut-off threshold probability, is taken to be the prediction for 
the target node. For example, for a 50% cut-off threshold 
probability, the state which belief level is higher than 50% is 
taken to be the prediction. The predictions are then 
compared with the observations. The statistics from the 
comparison are used to derive values for the performance 
metrics (optimality criteria), for the model being evaluated. 
The optimal refers to the model which is best in terms of the 
adopted optimality criteria [22]. The performance metrics 
include: error rate, logarithmic (logloss) score, Brier score, 
and Sensitivity. These metrics are often used together, in any 
one model evaluation, in order to facilitate the drawing of 
more robust conclusions.  

The error rate (failure rate) function is based on the 
maximum likelihood state of the target node [23]. It gives 
the percentage of the cases in a test dataset for which the 
query node was wrongly predicted. The logarithmic 
(logloss) score, suggested by [24], is defined as follows: let 
X denote a discrete random variable, with m (mutually 
exclusive) possible states, x1, x2,…, xm, which is to be 
observed for a sequence of cases, i = 1,…….,N. Let P(xi) 
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Fig. 5: Semi Data-Centred (semiDataBN) Approach 
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denote the estimated probability (referred to as the predicted 
value for the purposes of the test) for the ith state.  Suppose 
the jth state is actually observed, then the particular 
observation is associated with a logloss score for the jth state 

given by [24] as: log(1 ( )) log ( )P x P xj j j= = −llll . 

Then, by accumulating the scores for the N cases, a total 

penalty value is obtained as: 
1

N
jj

= ∑
=

l ll ll ll l , and the average 

logloss score for the N cases is:  

1 1
log ( )

1 1

N N
P xavg j jN Nj j

= = −∑ ∑
= =

l ll ll ll l . The logloss value 

lies in the range [0, ∞], where smaller (lower) values of the 
score imply better model performance.   

The Brier score (b), also referred to as Quadratic Loss 
(QL) or Mean Squared Error of Prediction (MSEP), 
measures the accuracy of a set of probability assessments. 
The Brier score function, as used in BN model performance 
comparison, is given by [10][11][28][24] as: 

( )1 21 2 ( | ) ( | )
1 1

N k
b P y c x P y j xi iN i j

= − × = + =∑ ∑
= =

  
  

  
, 

where ( | )P y c xi=  is the probability predicted for the actual 

(observed) state, c , of the target variable, y (the state of y in 
the particular record of the test dataset), given the evidence 
variables, xi ; ( | )p y j xi= is the probability predicted for the 

jth state of y, given the evidence variables; k is the number of 
states of the target variable, y; N is the number of records in 
the test dataset. The QL is a measure of the average 
quadratic loss that occurred on each instance in the test 
dataset. It is averaged over all the records in the test dataset 
and not only accounts for the probability assigned to the 
actual (observed) state, but also the probabilities assigned to 
the other possible states of y. The value of Brier score lies in 
the range [0, 1], with b = 0 indicating highest prediction 
accuracy, thus better performance. 

Sensitivity (recall rate) gives the proportion (in %) of 
actual observations which are correctly predicted. A 
sensitivity of 100% means that the model correctly predicted 
all actual observations for the target variables. 

 

V. RESULTS AND DISCUSSION 

For the investigation, a total of five different models were 
actually constructed, where the intention had been to 
construct seven. The reason for this short fall will later 
become evident. The constructed models are: the 
totalExpertBN, two totalDataBN, and three semiDataBN. 
The sizes of the training and tests datasets were 137024 and 
7000 samples, respectively. Two different training datasets 
(TDSMP and TDSPP – both the same size) and one test 
dataset, TD, were used. The TDSPP dataset was generated 
with the complete (structure plus parameters) totalExpertBN 
model, while the TDSMP dataset was generated with only 
the model structure (structure minus parameters) of the 
totalExpertBN, with the assumption of observability. It was 
also assumed that the data samples are representative of the 
larger set of baselines samples. The test dataset was used for 
evaluating the models. The results of the empirical 

investigation are hereby presented with respect to the 
models’ performance metric values and performance indices, 
shown in Table 1 and Fig. 5, respectively.  The performance 
index function is given as: 

[ ] (0 1 )(100 ) (1 )*100 (1 )*100normalized scalee b s lψ −= − + − + + − , 

where e = error rate, b = brier score, l = logloss, and s = 
sensitivity. The function assumes equal importance for all 
the metrics, taking as input, the values of the metrics, for a 
model, and yields a performance index for the model. 

The results of the investigation, shown in Table I and Fig. 
6, are encouraging and highlight some interesting themes. 
Also, they constitute significant contributions to literature on 
Bayesian networks model construction. The results, in 
addition, highlight an important issue for further 
investigation. First, the performances of the semi data-
centred models, semiDataBNSPPa and semiDataBNSPPb, 
constructed with the TDSPP training dataset were 
comparable to the performance of the reference model, 
totalExpertBN. So also was the performance of the total 
data-centred model, totalDataBNSPPb, constructed with the 

TDSPP training dataset. Second, the performance of the 
semi data-centred model, semiDataBNSMPa, constructed 
with the TDSMP training dataset, was relatively poor 
compared to the performance of the reference model, taking 
0.50 index as the threshold between comparable and poor 
performance. Its learnt CPT entries were more or less 
inconclusive. Third, in all cases where the training dataset, 
TDSMP, was to be used for model construction involving 
structure learning (as in the cases of constructing the 
totalDataBNSMP and semiDataBNSMPb), no structures 
were learnt. That is, the structure learning algorithm failed to 
discover any relationship between the variables in the 
training dataset. This is why there are no performance metric 
value entries for the models in Table 1. Hence, only five 
models were constructed, instead of the intended seven. 
Finally, the totalExpertBN and the semiDataBNSPPb had 
the highest Performance Index (PI) of 1, followed by the 
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TABLE I 
PERFORMANCE EVALUATION RESULTS 

74.650.3740.545429.54semiDataBNSPPb
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semiDataBNSPPa with a PI of 0.96, and then 
talDataBNSPP, with a PI of 0.90. The performances of the 
three data related models, semiDataBNSPPb, 
semiDataBNSPPa, and totalDataBNSPP are significant. 
However, the results indicate that it may not have been 
possible to construct the three models without first 
constructing the complete reference model (structure + 
parameters) (the totalExpertBN model), with the assistance 
of domain experts. It was observed, as shown by the results, 
that a complete reference model (that is knowledge of the 
relationship between the domain variables and their 
Conditional Probability Distributions (CPDs)) is a 
requirement for simulating sample datasets for structure 
and/or parameter that will yield meaningful and comparable 
models. This highlights the need for further investigation of 
the effect of historical domain training data samples, not 
generated with knowledge of the relationship between the 
domain variables and their CPDs, on structure and parameter 
learning.  
 

VI.  CONCLUSION 

The optimal approach for the construction of a BN model 
for the performance assessment of undergraduate electronic 
engineering students’ laboratory work in a virtual laboratory 
environment has been investigated. The exercise has yielded 
significant results and highlighted an aspect requiring further 
investigation. The results provide reassurance that the 
procedure followed in the derivation of the assessment 
model was fit for purpose. In addition, the results provide 
additional insight for researchers, and shows that the data- 
and semi-centred BN model construction approaches depend 
on the availability of appropriate sample training datasets. 
The source of the training dataset could impact on the 
outcome of the model construction. 
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