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Abstract.: This paper presents a numerical solution for the 
problem of the 2D compressible fluid flow around obstacles  
based on solving the singular boundary integral equation  with 
quadratic boundary elements of lagrangean type.  A 
truncation method is used to evaluate the coefficients that arise 
due to the singular integrals. The singular boundary equation 
obtained with the direct boundary element technique is 
considered in this paper. Some considerations about the 
truncation method are also made.  
 A computer code in MATHCAD is created based on the 
method proposed. Numerical results are compared with exact 
ones for some particular cases when exact solutions exist. The 
comparisons show that even for a small numbers of nodes on 
the boundary the numerical solutions are in good agreement 
with the exact ones.  

 
Index Terms:  singular integral equation, quadratic boundary 
elements, compressible fluid flow, truncation method. 
 

I. INTRODUCTION 

 There are many papers regarding problems of fluid 
flows solved with the boundary element method (BEM) 
because it is a very powerful numerical technique for 
solving boundary value problems for systems of partial 
differential equations [1], [2], [3], [4].  
 The advantage of BEM over other methods arises from 
the fact that there is no need to mesh the whole domain of 
the problem but only its boundary and this brings an 
improvement to the computational efficiency. The 
advantage is greater when solving problems with 
unbounded domains, like those of fluid flows around 
obstacles, because when applying this method there is no 
need to introduce fictive boundaries at great distances as in 
case of other methods.  
 Two techniques can be used to get the boundary 
formulation of the problem: the direct and the indirect 
technique. In paper [5] a singular integral equation is 
obtained by applying the direct technique for the problem of 
the 2D compressible fluid flow around obstacles. The direct 
technique has the advantage that uses real unknowns, as the 
components of the perturbation velocity field. 
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It doesn’t use the potential or the stream function as in 

other approaches [1], [2], [3], [4], [6] and this brings a great 
advantage because there is no need of a derivation process 
in order to get the quantities of interest.  

 When solving singular boundary integrals big problems 
arise when handling the singularities. The boundary element 
method uses an exact equivalent formulation of the problem 
and so, when this method is applied, errors arise only 
because of the boundary discretization and of the numerical 
schemes use to evaluate the integrals that appear. For usual 
integrals numerical techniques have been implemented in 
many math software applications and so we can simply use 
them to evaluate such kind of integrals, but the evaluation of 
the singular ones represents a great challenge. Different 
methods can be used to treat singular integrals but some are 
easier than others. We mention only some of them (see for 
more details [7]): ignoring the singularity, the truncation 
method, the regularization method, the change of variables, 
etc. 

  

II. CONSIDERATION ABOUT THE TRUNCATION METHOD 

 One of the simplest methods that can be applied is the 
truncation method. When applying it the errors are 
sometimes bigger than in other cases but, if using higher 
order boundary elements, it offers good numerical results 
too. 

 It can be applied in this case because the singular 
integral is considered in a Cauchy sense, which implies its 
definition with a limit process. This definition consists the 
support in choosing this method for evaluating the singular 
integrals.  

 This technique is advantageous because it doesn’t need 
any manipulation or special treatment of the integral or of 
the kernel. It is suitable for the numerical evaluation of the 
integrals that don’t oscillate near the singularities (see [7]),  
as in our case. It is easy to apply and it is also easy to 
implement in a computer code.  

As shown in paper [8], in some cases, when the truncation 
method is used, the numerical results were not as good as 
we expected. As it is natural, higher order boundary 
elements offer better results then in case of solving the same 
boundary integral equation with constant or linear boundary 
elements. 

Higher order boundary elements offer a better 
approximation for the geometry involved and for the 
unknown of the problem and so when using them for 
solving singular boundary integral equations, with 
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singularities defined in the Cauchy sense we can use 
truncation method to evaluate the singular integrals.  

 For showing the truncation method efficiency in case of 
using higher order boundary elements for solving the 
singular boundary integral equation considered we made an 
analytical checking of the numerical results. We consider a 
particular case when exact solution of the problem exists. 
Comparisons between the numerical solution and the exact 
one are made and they show good agreement between them 
and made us to conclude that this method can be 
successfully applied in this case and in other similar.    

For not introducing too many errors due to this treatment 
of the singularities the number of such evaluations has to be 
reduced at a minimum value. This aspect has been 
considered in this paper and it has influenced the accuracy 
of the numerical results.     

   

III. THE SINGULAR BOUNDARY INTEGRAL EQUATION 

 The problem we want to solve in this paper is that of 
finding the perturbation produced by an obstacle placed in a 
steady inviscid compressible fluid flow. Far from the 

obstacle it is assumed to have a subsonic velocity iU , 

pressure p  and density  .  

 Using dimensionless variables and the fundamental 
solutions of the system involved and applying the direct 
boundary element method technique in [5] a singular 
boundary integral equation is obtained:   
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where   xy vnnuG   is the unknown function, 

yx nn ,  are the components of the normal unit vector noted 

n , vu,  the components of the dimensionless perturbation 

velocity, 21 M  (M= Mach number for the 

unperturbed motion)., Cx 0 ,  00 xnn  and ** ,vu are 

the fundamental solutions  given by the following relations: 
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The sign “′ “denotes the principal value in Cauchy sense 
of the integral (see[9]). 

The principal value in Cauchy sense of an integral is 
defined as a limit of the implied integral: 
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where c represents a small piece of the boundary C situated 

in the vicinity of Cx 0 , given by: 

 ,0xDCc  , 

 ,0xD  being the disc centered in Cx 0  of 

radius 0 . 
In [7] the truncation method is presented and it is shown 

that it offers good results when evaluating singular integrals 
for which the integrand doesn’t oscillate near the 
singularities. 

In our case the integrand has this propriety so we can use 
this method because it offers good results.  We group all 
terms with singularities into one coefficient in order to use 
only for one singular integral the truncation method. 

Denoting by:  
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we get the following equivalent  equation: 
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IV. QUADRATIC ISOPARAMETRIC BOUNDARY ELEMENTS FOR 

SOLVING THE SINGULAR BOUNDARY INTEGRAL EQUATIION 

We use quadratic isoparametric boundary elements of 
lagrangean type to solve (5) and the truncation method for 
the treatment of the singularities.  

 The same boundary integral equation is solved in [10] by 
using linear boundary elements. A collocation method is 
used in paper [11] for the case when the ground effect is 
considered too.  In paper [12] quadratic boundary elements 
are used, but for the singular boundary integrals that arise a 
regularization method is used. It offers very good results but 
it is not very easy to apply, and, as we shall see, the 
truncation method can be a good alternative at it, because it 
offers, in this case, good results too.   

Same kind of boundary elements were used in papers [13] 
but for solving the singular integral equation obtained by an 
indirect method with sources distributions on the boundary. 

 We chose the quadratic boundary elements because they 
bring some advantages. They offer to the unknown of the 
problem a global continuity on the boundary, and a better 
approximation for it and for the geometry of the problem 
then in case of linear or constant boundary elements. 

The boundary is divided into N one-dimensional 

quadratic boundary elements, noted iL , with three nodes 

each of them: two extreme nodes and an interior one, noted 
iii xxx 321 ,, , in a local numbering .We have the relations: 

1,1,3
1

1  Nixx ii , and 1
13 xx N   contour C being 

closed. There are necessary 2N nodes on the boundary. We 
get: 
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(6) 
 Considering that equation (6) is satisfied in every node 

( jxx 0  in the global notation), we obtain a system of 

linear equations. Its solution represents the set of the nodal 
values of the unknown of the problem.  
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We use two systems of notation: a global and a local one 

(global- jG  is the value of G for the node number 

j, Nj 2,1 and local- NilGi
l ,1,3,1,   is the value for 

the node number l of element i).  
When the local system of coordinates is considered to be 

the intrinsic system, we have for the shape functions the 
following expressions: 
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So   ixNx  ,   iyNy  ,   iGNG         (8) 

where  N  is the line matrix,    321 NNNN  ,  

   ii yx ,  the column matrices made with the nodes 

coordinates of element iL , and  iG  the column matrix 

made with the nodal values of G on iL , 

   tiiii GGGG 321 . 

Introducing in equation (6) the considered approximation 
models we get: 
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we obtain: 
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and further  
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After evaluating the integrals in (12) we reduce the problem 
to the following system of equations: 
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Some of the coefficients l
ija  are given by usual integrals, 

which can be evaluated using ordinary rules or by any math 
software, but others are singular and arise from integrals 
considered in a Cauchy sense. For those we apply the 
truncation technique in order to evaluate them.  

We first evaluate the coefficients that arise from the   
nonsingular integrals. For them we can use the expressions 
given in [13], but we prefer a uniform approach. 

After doing some calculus, and denoting by: 
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and the expressions for the coefficients in (13). 
For l=1 we obtain: 
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where 
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The last coefficient arisen from nonsingular integrals is: 
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For evaluating the singular coefficients, based on the 
truncation method, we consider a very small parameter eps 
> 0 in order to reduce the domain of integration by 
eliminating the singularity. 

Taking into account the cases when the singularity arises 
we get the following three situations.  

When j is the first node of element iL ( 12  ij ) the 

singularity arises when 1 . The coefficients have in 

this case the same expressions but the inferior  limit of the 
integral becomes -1+eps. So we have relations: 
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When j is the second node of element iL ( ij 2 ) the 

singularity arises when 0 . The coefficients have in this 

case expressions: 
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 Finally, when j is the third node of element 

iL ( 12  ij ), the singularity arises when 1 , and so 

we have : 
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Returning to the global system of notation we can write 
system (13) as: 
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We finally get an equivalent form for the above system: 
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the unknowns being the nodal values of G: NGGG 221 ,..., .  

Solving this system we find the nodal values of function 
G, and then the velocity components with the following 
relations: 
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V. NUMERICAL RESULTS AND CONCLUSIONS 

All coefficients in system (25) have analytic expressions 
and depend only on the nodes coordinates, so we can use a 
computer for their evaluation. The method presented in this 
paper has been implemented into a computer code made in 
MATHCAD.  

In order to test the method we make an analytical 
checking. We consider an inviscid fluid flow in the presence 
of a circular obstacle. In this case there is known the exact 
solutions of the problem, which can be found in many 
books, as for example [14]. We consider the incompressible 
case, so 1 .  

The code we proposed, in MATHCAD, calculates the 
coefficients of the system, the unknowns, the components of 
the velocity and the pressure coefficient in the points 
situated on the boundary. For the boundary discretization 
we have used only 20 nodes. For the truncation parameter, 
eps, we have considered a very small value, eps=0.00001. 

The results obtained are presented in the graphics bellow. 
The first two graphics make a comparison between the exact 
and numeric values of the components of the velocity field 
and the last one for the pressure coefficient. 
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Fig.1. The velocity along Ox (vx- numerical solution, Vx-
exact solution)- circular obstacle. 
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Fig.2. The velocity along Oy (vy- numerical solution, Vy-
exact solution)-circular obstacle. 
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Fig.3. The local pressure coefficient (coep- numerical 
solution, cp-exact solution)-circular obstacle. 

 
Even we have considered only 20 nodes on the boundary, 

the computer code we made can be adapted to run for 
different number of nodes chosen on the boundary, and also 
for other kind of smooth obstacles. 

From figures 1, 2 and 3 we can observe that the calculated 
and the analytical values of the two components of the 
velocity field and the values of the pressure coefficient (Fig. 
1 for the velocity along Ox,  Fig 2 for the velocity along Oy, 
and Fig. 3 for the local pressure coefficient) are in good 

agreement, fact that shows the great accuracy of the method 
proposed.  

Better results are expected when more nodes are chosen 
for the boundary discretization or when grater values for eps 
are considered. 

So, even if the truncation method is a very simple method 
to treat the singularities, it can be successfully applied when 
using higher order boundary elements to solve problems 
with BEM, especially when the integrals that appear are 
defined in a Cauchy principal sense and when having 
integrands that don’t oscillate near the singularities. 
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