
 

  
Abstract—The main functionality of a compiler is to translate 

source code to an executable machine code correctly and 
efficiently. Compiler construction is an advanced research area 
due to size and complexity of the code generated from the 
source program. Design and construction of error-free and 
verified compiler will remain a challenge of the current 
century. Verification of a source program does not assure that 
the generated code is correct because the compiler may lead to 
an incorrect target program due to bugs and errors in itself. 
Hence verification of a compiler is more important than 
verifying the source program. Lexical analyzer is a main part 
of compiler used for scanning input stream of characters and 
grouping into tokens. In this paper, formal construction of 
syntax tree is described directly from the regular expression to 
verify the lexical analyzer. At first, augmented regular 
expression is described then an abstract syntax tree is defined 
based on the regular expression. Finally formal description of 
some important operators checking null-ability and computing 
first and last positions of the internal nodes of the tree are 
formalized. The specification is described using Z notation then 
validated using Z/Eves toolset. Formal model is analyzed using 
powerful techniques of reduction and rewriting available in the 
Z/Eves toolset. 
 

Index Terms—automata theory, compiler verification, lexical 
analyzer, automated tools, Z specification 
 

I. INTRODUCTION 
OMPILER is a program which translates a source 
program written in a high level programming language 

into an equivalent machine code. The higher level languages 
not only increase abstraction between source and resulting 
codes but also increase complexity when it is required to 
formalize these abstract structures. Now a day, compiler 
construction is considered as an advanced research area due 
to the size and complexity of the code generated. It is 
believed that design and construction of a verified compiler 
will remain a challenge of twenty first century. Although 
there exists much work in this area but it needs further 
investigation because the bugs in the compiler can lead to an 
incorrect machine code even the source program is verified 
to be correct. Further, if bugs are detected after testing the 
executable machine code it might be due to the source 
program or the compiler itself. This issue has led to 
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verification of a compiler proving correctness of the source 
program before allowing it to run on the machine. 
Formal methods are mathematical-based techniques used for 
specification, analysis, proving and verification of software 
and hardware systems [1]. The process of formal verification 
means applying formal techniques to verify the properties of 
a system. Formal verification of software targets the source 
program in which the semantics of a language gives the 
precise meanings to the program to be analyzed. On the 
other hand, program verification does not provide any 
guarantee that the executable machine code is correct as 
described by the semantics of the source program. This is 
because compiler may lead to an incorrect target program 
because of bugs in the compiler itself and can invalidate the 
guarantees ensured by the formal techniques. It concludes 
that verification of a compiler is much more important than 
verification of a source program to be compiled. 
In this paper, formal construction of syntax tree is described 
directly from the regular expression to verify the lexical 
analyzer. Lexical analyzer is an important part of compiler 
which scans input stream of characters making groups into 
tokens. Tokens are sequences of characters having meanings 
in collective format. Few preliminary results of this research 
were presented in [2] by formalizing some important 
concepts of context-free grammar useful for parsing 
analysis. In this paper, regular expression (input program) is 
described by defining all of its possible symbols and 
operators. Relationship among the components of expression 
is specified to prove its well-defined-ness. The regular 
expression is augmented by joining a special symbol at the 
end of the program. An abstract syntax tree is defined based 
on the regular expression including its internal and terminal 
nodes. Finally formal description of three important 
operators checking null-ability and computing first and last 
positions of all the internal nodes of the syntax tree are 
described. Formal specification of the algorithm is described 
using Z notation and model analysis is provided using 
Z/Eves toolset. The results of this paper will be used in our 
ongoing project on verification of compiler. The major 
objectives of our research are: (i) linking automata and 
formal techniques, (ii) preparing a synthesis of approaches 
to be useful in the development of automated tools, (iii) 
identifying and proposing an integration of traditional and 
formal approaches and (iv) practicing syntactic and semantic 
relationship of Z and automata in compiler verification. 
Currently, it is not possible to develop a complete software 
program using any single formal technique and, hence, 
integration of approaches is required. Although integration 
of approaches is a well-researched area [3-5] but there does 
not exist much work on verification of compiler by linking 
formal techniques and automata theory. Dong et al. have 
described an integration of timed automata and Object Z [6-
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7]. R. L. Constable has presented formal description of few 
important concepts of automata [8-9]. A formal relationship 
is explored between Petri-nets and Z notation in  [10]. 
Formal analysis of UML is presented in [11-12] using B. An 
introduction to algebraic structures is investigated using 
fuzzy automata in [13]. A formal procedure of fuzzy 
automata and language theory is discussed in [14]. An 
important notion of algebraic and automata theories is 
presented in [15]. Rest of the paper is organized as follows: 

In section 2, an introduction to Z notation is given. In 
section 3, reasoning to construct verified complier is 
provided. Formal construction of syntax tree is given in 
section 4. Model analysis is done in section 5. Conclusion 
and future work are discussed in section 6. 
 

II. AN INTRODUCTION TO Z NOTATION 
In requirements engineering, there exists various traditional 
methods which typically are used for expressing software 
specifications using computer tools for checking properties 
of systems. Such methods require a full commitment because 
the specification must be used to construct a complete and 
consistent model which will be assumed as a baseline for the 
further development. For complex and incomplete model 
such methods are not very effective. However, for the 
complete validation and verification of large scale software 
specification, it is needed to apply mathematics-based 
techniques to overcome the weaknesses of the traditional 
approaches. Experience of applying formal methods shows 
that it is one of the best options for modeling, particularly, 
safety critical and complex systems for checking and 
verifying the safety and other properties. 
Formal methods are notations based on discrete mathematics 
used for describing and analyzing properties of software 
systems using computer tools. Usually these techniques are 
based on discrete structures such as sets, relations, functions, 
graphs and automata. Formal approaches may be classified 
as property oriented and model descriptive. Property based 
methods are used to describe software in terms of properties 
and invariants. Model oriented methods are used to construct 
model of a system emphasizing both on statics and dynamics 
of a system. Although there are various notations of formal 
methods but at the current stage of development, it needs an 
integration of formal and existing approaches for complete 
and consistent description of a system. 
Z notation is a model centered approach based on sets, 
sequences, bags, relations and predicate logic [16]. The Z is 
a specification language used at an abstract level of 
modeling and specification of systems. Z is usually used for 
specifying behavior of sequential programs by the abstract 
data types. The Z has standard set operators, for example, 
union, intersection, comprehensions, Cartesian products and 
power sets. The Z allows organizing a system into its smaller 
components using a powerful data structure named schema. 
The schema defines a way in which state of a system can be 
described and refined. Schema has two parts one for 
definitions and other for defining properties. Refinement is a 
promising way of Z supporting verifiable transformation 
from an abstract specification into an executable code. 
Formal specification described using Z notation can further 
be refined and transformed to an implemented system. 
 

III. VERIFYING LEXICAL ANALYZER 
Compiler verification is a branch of software engineering 
which deals to prove that compiler behaves exactly as its 
language specification. Testing and formal methods are two 
most common techniques for validation and verification in 
development of a compiler. Compiler testing has various 
disadvantages similar to other computer programs testing. 
For example, it is hard to prove that compiler is completely 
error-free and optimized. The primary objective of writing a 
compiler is to prove that it is correct and error-free. There 
exists much research work referring that many tested 
compilers have bugs and errors in the code [17]. An 
alternative way is to apply formal methods in compiler 
verification to find proofs reducing complexity and ensuring 
correctness of construction procedure. Due to required 
accuracy, reduction in complexity and optimization needed, 
compiler construction has become very important and 
advanced area of research in computer science. Moreover, it 
is realized that construction of a fully verified compiler is a 
challenge of the twenty first century.  
The main task of a compiler is to translate a source code to 
an executable and optimized machine code. Of course, an 
accuracy in compiler construction has much importance 
because the bugs in the compiler can lead to an incorrect 
machine code generated from the source code even the 
source program is fully verified. Constructing and verifying 
lexical analyzer is an important phase of a compiler whose 
functionality is to scan the input stream of characters from 
left to right and grouping it into tokens. The tokens are 
sequences of characters having meanings in a grouped 
format. There are two primary methods for implementing the 
lexical analyzer. The first one is a hard coded program to 
perform the scanning tasks and the second one uses regular 
expression and automata theory to model the scanning 
process. In the first method a main loop in the program reads 
characters one by one from the input program and uses a 
switch statement to process it. The output of the procedure is 
a sequence of tokens from the source program.  
In the second method, the source program is read character 
by character beginning with the start state. After reading 
each character, the transition function is used to move from 
current state to the next state. If the final state is reached, it 
is checked if the token read is reserved word it is passed to 
the token stream as output. If it is not a reserved word, its 
name is put in the symbol table if does not exit already. 
Once a final state is reached an associated action is 
performed and the same process is continued. If we are not 
able to reach a final state an error is encountered and error 
handling routine is called upon. In this method, input is a 
program which is a regular expression and output is a 
collection of tokens identified by the finite automata. In this 
paper a part of verification of lexical analyzer to construct 
syntax tree from regular expression is described.    
There are various other applications of automata theory in 
addition to compilers construction and verification. Software 
engineering and maintenance, pattern identification, robotics 
and speech recognition are some examples of it [18]. In 
software engineering, test cases can be generated if the 
system is described by models using automata theory [19]. 
Applications of automata theory in pattern recognition 
increase an accuracy of the patterns to be recognized. This is 
because it can provide a higher level of abstraction by 
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defining the semantics rules for patterns as compared to 
other specifications techniques. The applications of pattern 
recognition are found everywhere from language processing 
to computer networks. 
 

IV. FORMAL SPECIFICATION 
Main objective of this research is to construct deterministic 
finite automata from a regular expression directly. For this 
purpose, at first, we describe formal specification of a given 
regular expression using Z notation. Then regular expression 
is extended by adding a special symbol as an end character. 
End character is used to show the end of input string given 
to lexical analyzer. Internal node is defined to have 
information including left position, right position and 
nullable variables. In next, the syntax tree is described based 
on the regular expression. Finally, functions for computing 
left positions, right positions and nullable operator for every 
node of the syntax tree are described. Although we are well-
acquainted with regular expressions but a brief review is 
given below before its formal description.   
Symbol: is an abstract entity. Letters, digits and punctuation 
are examples of symbols. 
Alphabet: is a finite set of symbols used to build larger 
structures. In automata theory, alphabet is usually denoted 
by the Greek letter sigma ∑. For example, ∑ = {a, b, c} is an 
alphabet, where a, b, c are symbols, and abcb is a structure.  
Empty String: consists of zero symbols and is denoted by ε. 
∑*: is a set of all possible strings that can be generated from 
a given alphabet ∑.  
Regular Expression: is a rule that defines the set of words 
that are valid tokens in a formal language. The regular 
expressions (rules) are usually built up from three operators 
named as concatenation, alternation and repetition.  
 

A. Regular Expressions 
In formal specification of regular expression, four variables 
are assumed as listed in the schema RE given below. The 
first one is symbols which is a collection of all alphabets and 
operators. It represents internal nodes in the syntax tree. The 
second one is terminals which is a finite set of alphabets 
representing children in the syntax tree. The third one is 
operators having values concatenation, alternation and 
repetition. The fourth one component is regular expression 
representing re and is a sequence of alphabets and operators. 
The Symbol, Terminal and Operator are sets at an abstract 
level of specification over which operators, for example, 
union, intersection and complement cannot be defined. 

[Symbol]; Terminal Symbol; Operator Symbol 

Formal definition of regular expression is given below using 
RE schema. In first part of the schema, definitions of 
variables defining regular expression are given. Invariants 
over the variables and their relations are defined in second 
part of the schema in terms of properties. In fact, invariants 
prove the well-defined-ness of the variables in Z notation. In 
definition of variables symbols has a type of power set of 
Symbol. The set of alphabets terminals has a type of power 
set of Terminal. The third variable, operators, has a type of 
power set of Operator. The last one regular expression has a 
sequence type consisting of alphabets and operators. In the 

schema, star and plus symbols are used to represent 
repetition. The symbol or is used for alternation. The 
symbols lp and rp represent to left and right parenthesis. 
 
RE 
symbols:  Symbol 
terminals:  Terminal 
operators:  Operator 
re: seq Symbol 
star, plus: Symbol 
or, lp, rp: Symbol 

star  operators  plus  operators 
or  operators  lp  symbols rp  symbols 
t: Terminal t  terminals t  symbols 
o: Operator o  operators o  symbols 
# re  1  1 re 1  re  re 1  or  re 1  star  re 1  plus  
re 1  rp # re  1  # re re # re  re  re # re  or  re # 
re  lp 
star  ran re  plus  ran re 
 # re  2  i:  i  2 .. # re 
        re i = star  re i = plus 
            re i - 1  terminals  re i - 1 = rp
or  ran re  # re  3  i:  i  2 .. # re - 1 
        re i = or  re i - 1  lp  re i - 1  or 
              re i + 1  rp  re i + 1  or
lp  ran re  # re  3 i:  i  1 .. # re - 1 
        re i = lp  re i + 1  rp  re i + 1  star 
              re i + 1  plus  re i + 1  or
rp  ran re  # re  3  i:  i  2 .. # re re i = rp  re i 
- 1  lp  re i - 1  or
 
Invariants: 

• The repetition symbols, star and plus, are elements of 
the set of operators. 

• The alternation variable is an element of operators-set. 
• The left and right parentheses are elements of symbols. 
• Each element in the set of terminals is an element of set 

of symbols. 
• Each element in the set of operators is also an element 

of set of symbols. 
• If the regular expression is non-empty, then its left most 

symbol cannot be alternation or repetition operator. The 
first element cannot be right parenthesis. The right most 
symbol of the regular expression cannot be alternation 
operator or left parenthesis symbol. 

• If cardinality of regular expression is more than one 
then for any element, excluding first element, if it is 
repetition then its left is terminal or right parenthesis. 

• If cardinality of regular expression is more than two 
then for any element, excluding first and last elements, 
if it is an alternation element then its left cannot be 
alternation or left parenthesis and its right cannot be 
alternation of right parenthesis.  

• If cardinality of regular expression is more than two 
then for any element, excluding last element, if it is left 
parenthesis then its right element cannot be right 
parenthesis, repetition or alternation operator. 

• If cardinality of regular expression is more than two 
then for any element, excluding first element, if it is 
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right parenthesis then its left element cannot be left 
parenthesis or alternation operator. 

Because our objective is to formally construct deterministic 
finite automata for regular expression, that is why, a 
language consisting of set of all possible regular expressions 
is described by the schema REs given below. The schema has 
only one component res which is a power set of Schema RE. 
In the predicate part of the schema few of the properties of 
regular expressions are defined using universal quantifier. 
Similarly, rest of the properties can be described. 

REs
res:  RE 

re: RE re  res re . star  re . operators  re . plus  re . 
operators 
re: RE re  res re . or  re . operators 
      re . lp  re . operators  re . rp  re . operators 
re: RE re  res t: Terminal t  re . terminals t  re . 
symbols 
re: RE re  res o: Operator o  re . operators o  re . 
symbols 


After scanning input the lexical analyzer identifies the 
tokens. As there must be some special symbol at the end of a 
file which shows end of file in the input string. In the schema 
ExtendedRE given below, a special symbol hash (#) is joined 
at the end of the input string to produce augmented string. It 
is supposed that the hash symbol does not exist in the set of 
symbols of the regular expression. As regular expression is 
defined as a sequence of symbols that is why the special 
symbol is joined using concatenation operator. 

ExtendedRE 
∆RE 
hash: Symbol 

hash  ran re 
re' = re  hash

 

B. Tree Construction 
To construct deterministic finite automata directly from a 
regular expression, at first, syntax tree is required. The 
syntax tree from the augmented regular expression is 
described below. Then three important functions namely 
nullable, first position and last position are computed 
formally to be useful for the description of follow position 
function. After computing follow positions of the internal 
nodes of the abstract syntax tree deterministic finite 
automata can be easily constructed. 

Before description of the syntax tree a generic definition of 
an internal node of the tree is given below using the Schema 
Internal. The schema consists of six variables namely node 
for an identifier of the node, left for left child of the tree, 
right for right child of the tree,  firstpos for  first position 
function, rightpos for  right position function and nullable 
for checking nullability of the node. Nullable is a Boolean 
function having value true or false. First and last position 

functions are collection of identifiers of the node computed 
based on children nodes. 

NULLABLE ::TRUE FALSE 
 
Internal 
node: Operator 
left: ExtendedRE 
right: ExtendedRE 
firstpos:   
lastpos:   
nullable: NULLABLE 
 

A formal description of the relationship between regular 
expression and syntax tree is given using the REtoTree 
schema. The schema consists of nine components in addition 
to RE schema. The first one res is a collection of all possible 
regular expressions based on the ExtendedRE schema. The 
second one is a set of terminals which are alphabets of the 
language described by a regular expression. The third 
variable leafs is collection of children of the syntax tree. The 
fourth variable Internal is a set of internal nodes of the tree. 
The definitions of other components are already given in the 
definition of regular expression. 

REtoTree 
RE 
res:  ExtendedRE 
terminals:  Terminal 
leafs:  Symbol 
internals:  Internal 
 epsi, star, or, con: Symbol 
ids:   

l: Symbol l  leafs l = epsi  l  terminals 
i: Internal i  internals 
   re1, re2: ExtendedRE re1  res  re2  res 
        i . left = re1  i . right = re2  i . node = star 
           i . node = or  i . node = con 
# ids = # terminals 
ids = n: ; i: Internal i  internals  n  i . firstpos  n  i . 
lastpos n
 

Invariants: (1)  Leaf is either a terminal or null string. (2) 
Each internal node has two well-defined children. One of 
these might be null but both cannot be null strings. (3) The 
set of identifiers (leafs) of the tree is same as the set of 
terminals of the language. (4) The set of identifiers of parent 
is based on its children. 

 

C. Formal Specification of Operators 
Formal description of nullable, first position and last 
position operators is given here. The Nullable operator 
consists of four components, that is, the node itself, left 
child, right child and node type. The nullable variable of the 
node is computed based on its children. Three types of nodes 
are assumed that is alternation, concatenation and repetition. 
The definitions of the variables are given in first part of the 
schema and properties are described in the predicate part.    

NodeType ::OR CON STAR 
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Nullables
ileft?: Internal 
iright?: Internal 
iparent!: Internal 
type: NodeType 

type = OR 
 ileft? . nullable = TRUE  iright? . nullable = TRUE 
   iright? . nullable = FALSE 
   iparent! . nullable = TRUE 
type = OR 
 iright? . nullable = TRUE  ileft? . nullable = TRUE 
   ileft? . nullable = FALSE 
   iparent! . nullable = TRUE 
type = CON  iparent! . nullable = TRUE 
 iright? . nullable = TRUE  ileft? . nullable = TRUE 
type = STAR 
 iparent! . nullable = ileft? . nullable 
   iright? . nullable = ileft? . nullable 
 
Invariants: (1) If the node is alternation type then it is 
nullable if and only if one of its children is nullable. (2) If 
the node is concatenation type then it is nullable if and only 
if both of its children are nullable. (3) If node is repetition 
type then it is nullable if and only if it child is nullable. 

The first position function of a node n is a set of positions in 
the subtree rooted at n that correspond to the first symbol of 
at least one string in the language described by a part of the 
regular expression rooted at n. The LeftPositions function 
consists of same components as in case of Nullables. The 
left positions are described based on its children. 

LeftPositions
ileft?: Internal 
iright?: Internal 
iparent!: Internal 
type: NodeType 

type = OR 
iparent! . firstpos = ileft? . firstpos  iright? . firstpos 
type = CON 
ileft? . nullable = TRUE 
 iparent! . firstpos = ileft? . firstpos  iright? . firstpos 
ileft? . nullable = FALSE  iparent! . firstpos = ileft? . firstpos 
type = STAR 
iparent! . firstpos = ileft? . firstpos 
 ileft? . firstpos = iright? . firstpos 

Invariants: (1) If the node is alternation type then its first 
position is union of first positions of its left and right 
children. (2) If node type is concatenation, its left child is 
nullable then first position of the node is union of first 
positions of its left and right children. If left child is not 
nullable then first position is equal to first position of left 
child. (3) If the node is repetition type the then first position 
of the node is left position of its child.  

The last position function of the node n is the set of positions 
in the subtree of the syntax tree rooted at n that correspond 
to the last symbol of at least one string in the language 
described by the subexpression of the regular expression 
rooted at n. The last position operator consists of four 

components namely node identifier, left and right children 
and type. The formal description of last position function is 
described in predicate part of the RightPositions schema. 

RightPositions 
ileft?: Internal 
iright?: Internal 
iparent!: Internal 
type: NodeType 

type = OR 
iparent! . lastpos = ileft? . lastpos  iright? . lastpos 
type = CON 
iright? . nullable = TRUE 
 iparent! . lastpos = ileft? . lastpos  iright? . lastpos 
iright? . nullable = FALSE  iparent! . lastpos = ileft? . lastpos 
type = STAR 
iparent! . lastpos = ileft? . lastpos  ileft? . lastpos = iright? . 
lastpos 

Invariants: (1) If the node is alternation type then its last 
position is union of last positions of its left and right 
children. (2) If the node is concatenation type and its right 
child is nullable then last position of the node is union of last 
positions of its left and right children. If right child is not 
nullable then last position of the node is equal to last 
position of its right child. (3) If the node is repetition type 
then last position of the node is last position of its child. 
 

V. MODEL ANALYSIS 
In this section, model analysis is done for the specification. 
It is noted that although computer tools improve quality of 
software systems but, on the hand, there does not exist any 
real computer tool which may assure about complete 
correctness of a model. It means even the specification is 
well-written using any of the specification language it may 
contain potential errors. That is an art of writing a formal 
specification never guarantee that the system is correct, 
complete and consistent. However, if the specification is 
analyzed with computer tools it increases a confidence over 
the system to be developed. 
The Z/Eves is a powerful tool used here for analyzing the Z 
specification of construction of syntax tree based on a 
regular expression. A snapshot of the specification analysis 
is presented in Figure 1. The first column on the left of the 
figure shows syntax checking and the second column 
represents the proof correctness of the specification. The 
symbol ‘Y’ shows that the formal specification is correct 
syntactically and proof is also correct while the symbol ‘N’ 
represents that errors exist. All the schemas are checked to 
prove that specification is correct in syntax and has a correct 
proof. Some schemas of the specification were proved using 
reduction techniques available in the toolset.    
Summary of the analysis is presented in Table 1. In first 
column of the table, name of schema is given. The symbol 
“Y”, in column 2, indicates that all schemas are well-written 
and proved. Similarly, domain checking, reduction and proof 
by reduction are represented in columns 3, 4 and 5, 
respectively. The character “Y*” annotated with '*' shows 
that the schema is proved by performing reduction on the 
predicates part to make specification more meaningful. 
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Figure 1. Snapshot of the Model Analysis. 

TABLE I.  RESULTS OF MODEL ANALYSIS 

Schema Name Syntax Type 
Check 

Domain 
Check Reduction Proof 

RE Y Y Y Y 
REs Y Y Y Y 
ExtendedRE Y Y Y* Y 
Internal Y Y Y Y 
REtoTree Y Y Y Y 
Nullables Y Y Y Y 
LeftPositions Y Y Y* Y 
RightPositions Y Y Y* Y 
 

VI. CONCLUSION 
The development and verification of lexical analyzer has 
been an important research area. In this paper, syntax tree is 
directly generated from regular expression using Z notation 
for verifying lexical analyzer. Identification of errors and 
resolving of ambiguities at lexical level is important and a 
real challenge in compiler construction because unidentified 
errors may grow exponentially to the subsequent phases. The 
verification of lexical analyzer is benefited by linking 
automata to Z specification. The Z, being abstract in nature 
and having computer tool support, is used because it 
enhanced reliability and correctness of models of the system. 
It is observed that formal specification helped us to make it 
possible resolving ambiguities. The specification was 
verified and validated using Z/Eves toolset. Several other 
tools exist to support the formal specification but Z/Eves is a 
powerful one to analyze the specification because of rich 
mathematical notations which made it possible to reason 
about behavior of the specification more effectively. 
A need for such tools is not only in the area of programming 
languages but other applications, for example, pattern 
recognition and queries in databases can also benefit. For an 
accurate processing system, a program must be able to 
correctly process a language by obey precise lexical analysis 
rules using formal definitions which shows importance of 
this research. An exhaustive survey of existing work, on 
integration of approaches and verification of systems, was 
performed. Some of the interesting and relevant works [20-
28] were found but our approach is different because of 
abstract and conceptual level integration of automata and Z 
for verification. Formalization of other concepts, useful in 
compiler verification, is in progress and will appear soon. 
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