

Abstract—The main functionality of a compiler is to translate

source code to an executable machine code correctly and
efficiently. Compiler construction is an advanced research area
due to size and complexity of the code generated from the
source program. Design and construction of error-free and
verified compiler will remain a challenge of the current
century. Verification of a source program does not assure that
the generated code is correct because the compiler may lead to
an incorrect target program due to bugs and errors in itself.
Hence verification of a compiler is more important than
verifying the source program. Lexical analyzer is a main part
of compiler used for scanning input stream of characters and
grouping into tokens. In this paper, formal construction of
syntax tree is described directly from the regular expression to
verify the lexical analyzer. At first, augmented regular
expression is described then an abstract syntax tree is defined
based on the regular expression. Finally formal description of
some important operators checking null-ability and computing
first and last positions of the internal nodes of the tree are
formalized. The specification is described using Z notation then
validated using Z/Eves toolset. Formal model is analyzed using
powerful techniques of reduction and rewriting available in the
Z/Eves toolset.

Index Terms—automata theory, compiler verification, lexical
analyzer, automated tools, Z specification

I. INTRODUCTION
OMPILER is a program which translates a source
program written in a high level programming language

into an equivalent machine code. The higher level languages
not only increase abstraction between source and resulting
codes but also increase complexity when it is required to
formalize these abstract structures. Now a day, compiler
construction is considered as an advanced research area due
to the size and complexity of the code generated. It is
believed that design and construction of a verified compiler
will remain a challenge of twenty first century. Although
there exists much work in this area but it needs further
investigation because the bugs in the compiler can lead to an
incorrect machine code even the source program is verified
to be correct. Further, if bugs are detected after testing the
executable machine code it might be due to the source
program or the compiler itself. This issue has led to

Manuscript received March 05, 2012; revised April 01, 2012. This work

was supported in part by the Deanship of Scientific Research, King Faisal
University, Saudi Arabia.

The author Dr. Nazir Ahmad Zafar is with the Department of Computer
Science, College of Computer Sciences and Information Technology
(CCSIT), King Faisal University, Saudi Arabia. (phone: +966-3-5898139;
e-mails: nazafar@ kfu.edu.sa; nazafar@gmail.com).

verification of a compiler proving correctness of the source
program before allowing it to run on the machine.
Formal methods are mathematical-based techniques used for
specification, analysis, proving and verification of software
and hardware systems [1]. The process of formal verification
means applying formal techniques to verify the properties of
a system. Formal verification of software targets the source
program in which the semantics of a language gives the
precise meanings to the program to be analyzed. On the
other hand, program verification does not provide any
guarantee that the executable machine code is correct as
described by the semantics of the source program. This is
because compiler may lead to an incorrect target program
because of bugs in the compiler itself and can invalidate the
guarantees ensured by the formal techniques. It concludes
that verification of a compiler is much more important than
verification of a source program to be compiled.
In this paper, formal construction of syntax tree is described
directly from the regular expression to verify the lexical
analyzer. Lexical analyzer is an important part of compiler
which scans input stream of characters making groups into
tokens. Tokens are sequences of characters having meanings
in collective format. Few preliminary results of this research
were presented in [2] by formalizing some important
concepts of context-free grammar useful for parsing
analysis. In this paper, regular expression (input program) is
described by defining all of its possible symbols and
operators. Relationship among the components of expression
is specified to prove its well-defined-ness. The regular
expression is augmented by joining a special symbol at the
end of the program. An abstract syntax tree is defined based
on the regular expression including its internal and terminal
nodes. Finally formal description of three important
operators checking null-ability and computing first and last
positions of all the internal nodes of the syntax tree are
described. Formal specification of the algorithm is described
using Z notation and model analysis is provided using
Z/Eves toolset. The results of this paper will be used in our
ongoing project on verification of compiler. The major
objectives of our research are: (i) linking automata and
formal techniques, (ii) preparing a synthesis of approaches
to be useful in the development of automated tools, (iii)
identifying and proposing an integration of traditional and
formal approaches and (iv) practicing syntactic and semantic
relationship of Z and automata in compiler verification.
Currently, it is not possible to develop a complete software
program using any single formal technique and, hence,
integration of approaches is required. Although integration
of approaches is a well-researched area [3-5] but there does
not exist much work on verification of compiler by linking
formal techniques and automata theory. Dong et al. have
described an integration of timed automata and Object Z [6-

Automatic Construction of Formal Syntax Tree
Based on Regular Expressions

Nazir Ahmad Zafar

C

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

7]. R. L. Constable has presented formal description of few
important concepts of automata [8-9]. A formal relationship
is explored between Petri-nets and Z notation in [10].
Formal analysis of UML is presented in [11-12] using B. An
introduction to algebraic structures is investigated using
fuzzy automata in [13]. A formal procedure of fuzzy
automata and language theory is discussed in [14]. An
important notion of algebraic and automata theories is
presented in [15]. Rest of the paper is organized as follows:

In section 2, an introduction to Z notation is given. In
section 3, reasoning to construct verified complier is
provided. Formal construction of syntax tree is given in
section 4. Model analysis is done in section 5. Conclusion
and future work are discussed in section 6.

II. AN INTRODUCTION TO Z NOTATION
In requirements engineering, there exists various traditional
methods which typically are used for expressing software
specifications using computer tools for checking properties
of systems. Such methods require a full commitment because
the specification must be used to construct a complete and
consistent model which will be assumed as a baseline for the
further development. For complex and incomplete model
such methods are not very effective. However, for the
complete validation and verification of large scale software
specification, it is needed to apply mathematics-based
techniques to overcome the weaknesses of the traditional
approaches. Experience of applying formal methods shows
that it is one of the best options for modeling, particularly,
safety critical and complex systems for checking and
verifying the safety and other properties.
Formal methods are notations based on discrete mathematics
used for describing and analyzing properties of software
systems using computer tools. Usually these techniques are
based on discrete structures such as sets, relations, functions,
graphs and automata. Formal approaches may be classified
as property oriented and model descriptive. Property based
methods are used to describe software in terms of properties
and invariants. Model oriented methods are used to construct
model of a system emphasizing both on statics and dynamics
of a system. Although there are various notations of formal
methods but at the current stage of development, it needs an
integration of formal and existing approaches for complete
and consistent description of a system.
Z notation is a model centered approach based on sets,
sequences, bags, relations and predicate logic [16]. The Z is
a specification language used at an abstract level of
modeling and specification of systems. Z is usually used for
specifying behavior of sequential programs by the abstract
data types. The Z has standard set operators, for example,
union, intersection, comprehensions, Cartesian products and
power sets. The Z allows organizing a system into its smaller
components using a powerful data structure named schema.
The schema defines a way in which state of a system can be
described and refined. Schema has two parts one for
definitions and other for defining properties. Refinement is a
promising way of Z supporting verifiable transformation
from an abstract specification into an executable code.
Formal specification described using Z notation can further
be refined and transformed to an implemented system.

III. VERIFYING LEXICAL ANALYZER
Compiler verification is a branch of software engineering
which deals to prove that compiler behaves exactly as its
language specification. Testing and formal methods are two
most common techniques for validation and verification in
development of a compiler. Compiler testing has various
disadvantages similar to other computer programs testing.
For example, it is hard to prove that compiler is completely
error-free and optimized. The primary objective of writing a
compiler is to prove that it is correct and error-free. There
exists much research work referring that many tested
compilers have bugs and errors in the code [17]. An
alternative way is to apply formal methods in compiler
verification to find proofs reducing complexity and ensuring
correctness of construction procedure. Due to required
accuracy, reduction in complexity and optimization needed,
compiler construction has become very important and
advanced area of research in computer science. Moreover, it
is realized that construction of a fully verified compiler is a
challenge of the twenty first century.
The main task of a compiler is to translate a source code to
an executable and optimized machine code. Of course, an
accuracy in compiler construction has much importance
because the bugs in the compiler can lead to an incorrect
machine code generated from the source code even the
source program is fully verified. Constructing and verifying
lexical analyzer is an important phase of a compiler whose
functionality is to scan the input stream of characters from
left to right and grouping it into tokens. The tokens are
sequences of characters having meanings in a grouped
format. There are two primary methods for implementing the
lexical analyzer. The first one is a hard coded program to
perform the scanning tasks and the second one uses regular
expression and automata theory to model the scanning
process. In the first method a main loop in the program reads
characters one by one from the input program and uses a
switch statement to process it. The output of the procedure is
a sequence of tokens from the source program.
In the second method, the source program is read character
by character beginning with the start state. After reading
each character, the transition function is used to move from
current state to the next state. If the final state is reached, it
is checked if the token read is reserved word it is passed to
the token stream as output. If it is not a reserved word, its
name is put in the symbol table if does not exit already.
Once a final state is reached an associated action is
performed and the same process is continued. If we are not
able to reach a final state an error is encountered and error
handling routine is called upon. In this method, input is a
program which is a regular expression and output is a
collection of tokens identified by the finite automata. In this
paper a part of verification of lexical analyzer to construct
syntax tree from regular expression is described.
There are various other applications of automata theory in
addition to compilers construction and verification. Software
engineering and maintenance, pattern identification, robotics
and speech recognition are some examples of it [18]. In
software engineering, test cases can be generated if the
system is described by models using automata theory [19].
Applications of automata theory in pattern recognition
increase an accuracy of the patterns to be recognized. This is
because it can provide a higher level of abstraction by

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

http://en.wikipedia.org/wiki/Programming_language

defining the semantics rules for patterns as compared to
other specifications techniques. The applications of pattern
recognition are found everywhere from language processing
to computer networks.

IV. FORMAL SPECIFICATION
Main objective of this research is to construct deterministic
finite automata from a regular expression directly. For this
purpose, at first, we describe formal specification of a given
regular expression using Z notation. Then regular expression
is extended by adding a special symbol as an end character.
End character is used to show the end of input string given
to lexical analyzer. Internal node is defined to have
information including left position, right position and
nullable variables. In next, the syntax tree is described based
on the regular expression. Finally, functions for computing
left positions, right positions and nullable operator for every
node of the syntax tree are described. Although we are well-
acquainted with regular expressions but a brief review is
given below before its formal description.
Symbol: is an abstract entity. Letters, digits and punctuation
are examples of symbols.
Alphabet: is a finite set of symbols used to build larger
structures. In automata theory, alphabet is usually denoted
by the Greek letter sigma ∑. For example, ∑ = {a, b, c} is an
alphabet, where a, b, c are symbols, and abcb is a structure.
Empty String: consists of zero symbols and is denoted by ε.
∑*: is a set of all possible strings that can be generated from
a given alphabet ∑.
Regular Expression: is a rule that defines the set of words
that are valid tokens in a formal language. The regular
expressions (rules) are usually built up from three operators
named as concatenation, alternation and repetition.

A. Regular Expressions
In formal specification of regular expression, four variables
are assumed as listed in the schema RE given below. The
first one is symbols which is a collection of all alphabets and
operators. It represents internal nodes in the syntax tree. The
second one is terminals which is a finite set of alphabets
representing children in the syntax tree. The third one is
operators having values concatenation, alternation and
repetition. The fourth one component is regular expression
representing re and is a sequence of alphabets and operators.
The Symbol, Terminal and Operator are sets at an abstract
level of specification over which operators, for example,
union, intersection and complement cannot be defined.

[Symbol]; Terminal Symbol; Operator Symbol

Formal definition of regular expression is given below using
RE schema. In first part of the schema, definitions of
variables defining regular expression are given. Invariants
over the variables and their relations are defined in second
part of the schema in terms of properties. In fact, invariants
prove the well-defined-ness of the variables in Z notation. In
definition of variables symbols has a type of power set of
Symbol. The set of alphabets terminals has a type of power
set of Terminal. The third variable, operators, has a type of
power set of Operator. The last one regular expression has a
sequence type consisting of alphabets and operators. In the

schema, star and plus symbols are used to represent
repetition. The symbol or is used for alternation. The
symbols lp and rp represent to left and right parenthesis.

RE 
symbols:  Symbol
terminals:  Terminal
operators:  Operator
re: seq Symbol
star, plus: Symbol
or, lp, rp: Symbol

star  operators  plus  operators
or  operators  lp  symbols rp  symbols
t: Terminal t  terminals t  symbols
o: Operator o  operators o  symbols
# re  1  1 re 1  re  re 1  or  re 1  star  re 1  plus 
re 1  rp # re  1  # re re # re  re  re # re  or  re #
re  lp
star  ran re  plus  ran re
 # re  2  i:  i  2 .. # re
 re i = star  re i = plus
  re i - 1  terminals  re i - 1 = rp
or  ran re  # re  3  i:  i  2 .. # re - 1
 re i = or  re i - 1  lp  re i - 1  or
  re i + 1  rp  re i + 1  or
lp  ran re  # re  3 i:  i  1 .. # re - 1
 re i = lp  re i + 1  rp  re i + 1  star
  re i + 1  plus  re i + 1  or
rp  ran re  # re  3  i:  i  2 .. # re re i = rp  re i
- 1  lp  re i - 1  or

Invariants:

• The repetition symbols, star and plus, are elements of
the set of operators.

• The alternation variable is an element of operators-set.
• The left and right parentheses are elements of symbols.
• Each element in the set of terminals is an element of set

of symbols.
• Each element in the set of operators is also an element

of set of symbols.
• If the regular expression is non-empty, then its left most

symbol cannot be alternation or repetition operator. The
first element cannot be right parenthesis. The right most
symbol of the regular expression cannot be alternation
operator or left parenthesis symbol.

• If cardinality of regular expression is more than one
then for any element, excluding first element, if it is
repetition then its left is terminal or right parenthesis.

• If cardinality of regular expression is more than two
then for any element, excluding first and last elements,
if it is an alternation element then its left cannot be
alternation or left parenthesis and its right cannot be
alternation of right parenthesis.

• If cardinality of regular expression is more than two
then for any element, excluding last element, if it is left
parenthesis then its right element cannot be right
parenthesis, repetition or alternation operator.

• If cardinality of regular expression is more than two
then for any element, excluding first element, if it is

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

right parenthesis then its left element cannot be left
parenthesis or alternation operator.

Because our objective is to formally construct deterministic
finite automata for regular expression, that is why, a
language consisting of set of all possible regular expressions
is described by the schema REs given below. The schema has
only one component res which is a power set of Schema RE.
In the predicate part of the schema few of the properties of
regular expressions are defined using universal quantifier.
Similarly, rest of the properties can be described.

REs
res:  RE

re: RE re  res re . star  re . operators  re . plus  re .
operators
re: RE re  res re . or  re . operators
  re . lp  re . operators  re . rp  re . operators
re: RE re  res t: Terminal t  re . terminals t  re .
symbols
re: RE re  res o: Operator o  re . operators o  re .
symbols


After scanning input the lexical analyzer identifies the
tokens. As there must be some special symbol at the end of a
file which shows end of file in the input string. In the schema
ExtendedRE given below, a special symbol hash (#) is joined
at the end of the input string to produce augmented string. It
is supposed that the hash symbol does not exist in the set of
symbols of the regular expression. As regular expression is
defined as a sequence of symbols that is why the special
symbol is joined using concatenation operator.

ExtendedRE 
∆RE
hash: Symbol

hash  ran re
re' = re  hash


B. Tree Construction
To construct deterministic finite automata directly from a
regular expression, at first, syntax tree is required. The
syntax tree from the augmented regular expression is
described below. Then three important functions namely
nullable, first position and last position are computed
formally to be useful for the description of follow position
function. After computing follow positions of the internal
nodes of the abstract syntax tree deterministic finite
automata can be easily constructed.

Before description of the syntax tree a generic definition of
an internal node of the tree is given below using the Schema
Internal. The schema consists of six variables namely node
for an identifier of the node, left for left child of the tree,
right for right child of the tree, firstpos for first position
function, rightpos for right position function and nullable
for checking nullability of the node. Nullable is a Boolean
function having value true or false. First and last position

functions are collection of identifiers of the node computed
based on children nodes.

NULLABLE ::TRUE FALSE

Internal 
node: Operator
left: ExtendedRE
right: ExtendedRE
firstpos:  
lastpos:  
nullable: NULLABLE


A formal description of the relationship between regular
expression and syntax tree is given using the REtoTree
schema. The schema consists of nine components in addition
to RE schema. The first one res is a collection of all possible
regular expressions based on the ExtendedRE schema. The
second one is a set of terminals which are alphabets of the
language described by a regular expression. The third
variable leafs is collection of children of the syntax tree. The
fourth variable Internal is a set of internal nodes of the tree.
The definitions of other components are already given in the
definition of regular expression.

REtoTree 
RE
res:  ExtendedRE
terminals:  Terminal
leafs:  Symbol
internals:  Internal
 epsi, star, or, con: Symbol
ids:  

l: Symbol l  leafs l = epsi  l  terminals
i: Internal i  internals
 re1, re2: ExtendedRE re1  res  re2  res
 i . left = re1  i . right = re2  i . node = star
  i . node = or  i . node = con
# ids = # terminals
ids = n: ; i: Internal i  internals  n  i . firstpos  n  i .
lastpos n


Invariants: (1) Leaf is either a terminal or null string. (2)
Each internal node has two well-defined children. One of
these might be null but both cannot be null strings. (3) The
set of identifiers (leafs) of the tree is same as the set of
terminals of the language. (4) The set of identifiers of parent
is based on its children.

C. Formal Specification of Operators
Formal description of nullable, first position and last
position operators is given here. The Nullable operator
consists of four components, that is, the node itself, left
child, right child and node type. The nullable variable of the
node is computed based on its children. Three types of nodes
are assumed that is alternation, concatenation and repetition.
The definitions of the variables are given in first part of the
schema and properties are described in the predicate part.

NodeType ::OR CON STAR

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

Nullables
ileft?: Internal
iright?: Internal
iparent!: Internal
type: NodeType

type = OR
 ileft? . nullable = TRUE  iright? . nullable = TRUE
  iright? . nullable = FALSE
  iparent! . nullable = TRUE
type = OR
 iright? . nullable = TRUE  ileft? . nullable = TRUE
  ileft? . nullable = FALSE
  iparent! . nullable = TRUE
type = CON  iparent! . nullable = TRUE
 iright? . nullable = TRUE  ileft? . nullable = TRUE
type = STAR
 iparent! . nullable = ileft? . nullable
  iright? . nullable = ileft? . nullable

Invariants: (1) If the node is alternation type then it is
nullable if and only if one of its children is nullable. (2) If
the node is concatenation type then it is nullable if and only
if both of its children are nullable. (3) If node is repetition
type then it is nullable if and only if it child is nullable.

The first position function of a node n is a set of positions in
the subtree rooted at n that correspond to the first symbol of
at least one string in the language described by a part of the
regular expression rooted at n. The LeftPositions function
consists of same components as in case of Nullables. The
left positions are described based on its children.

LeftPositions
ileft?: Internal
iright?: Internal
iparent!: Internal
type: NodeType

type = OR
iparent! . firstpos = ileft? . firstpos  iright? . firstpos
type = CON
ileft? . nullable = TRUE
 iparent! . firstpos = ileft? . firstpos  iright? . firstpos
ileft? . nullable = FALSE  iparent! . firstpos = ileft? . firstpos
type = STAR
iparent! . firstpos = ileft? . firstpos
 ileft? . firstpos = iright? . firstpos

Invariants: (1) If the node is alternation type then its first
position is union of first positions of its left and right
children. (2) If node type is concatenation, its left child is
nullable then first position of the node is union of first
positions of its left and right children. If left child is not
nullable then first position is equal to first position of left
child. (3) If the node is repetition type the then first position
of the node is left position of its child.

The last position function of the node n is the set of positions
in the subtree of the syntax tree rooted at n that correspond
to the last symbol of at least one string in the language
described by the subexpression of the regular expression
rooted at n. The last position operator consists of four

components namely node identifier, left and right children
and type. The formal description of last position function is
described in predicate part of the RightPositions schema.

RightPositions 
ileft?: Internal
iright?: Internal
iparent!: Internal
type: NodeType

type = OR
iparent! . lastpos = ileft? . lastpos  iright? . lastpos
type = CON
iright? . nullable = TRUE
 iparent! . lastpos = ileft? . lastpos  iright? . lastpos
iright? . nullable = FALSE  iparent! . lastpos = ileft? . lastpos
type = STAR
iparent! . lastpos = ileft? . lastpos  ileft? . lastpos = iright? .
lastpos

Invariants: (1) If the node is alternation type then its last
position is union of last positions of its left and right
children. (2) If the node is concatenation type and its right
child is nullable then last position of the node is union of last
positions of its left and right children. If right child is not
nullable then last position of the node is equal to last
position of its right child. (3) If the node is repetition type
then last position of the node is last position of its child.

V. MODEL ANALYSIS
In this section, model analysis is done for the specification.
It is noted that although computer tools improve quality of
software systems but, on the hand, there does not exist any
real computer tool which may assure about complete
correctness of a model. It means even the specification is
well-written using any of the specification language it may
contain potential errors. That is an art of writing a formal
specification never guarantee that the system is correct,
complete and consistent. However, if the specification is
analyzed with computer tools it increases a confidence over
the system to be developed.
The Z/Eves is a powerful tool used here for analyzing the Z
specification of construction of syntax tree based on a
regular expression. A snapshot of the specification analysis
is presented in Figure 1. The first column on the left of the
figure shows syntax checking and the second column
represents the proof correctness of the specification. The
symbol ‘Y’ shows that the formal specification is correct
syntactically and proof is also correct while the symbol ‘N’
represents that errors exist. All the schemas are checked to
prove that specification is correct in syntax and has a correct
proof. Some schemas of the specification were proved using
reduction techniques available in the toolset.
Summary of the analysis is presented in Table 1. In first
column of the table, name of schema is given. The symbol
“Y”, in column 2, indicates that all schemas are well-written
and proved. Similarly, domain checking, reduction and proof
by reduction are represented in columns 3, 4 and 5,
respectively. The character “Y*” annotated with '*' shows
that the schema is proved by performing reduction on the
predicates part to make specification more meaningful.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

Figure 1. Snapshot of the Model Analysis.

TABLE I. RESULTS OF MODEL ANALYSIS

Schema Name Syntax Type
Check

Domain
Check Reduction Proof

RE Y Y Y Y
REs Y Y Y Y
ExtendedRE Y Y Y* Y
Internal Y Y Y Y
REtoTree Y Y Y Y
Nullables Y Y Y Y
LeftPositions Y Y Y* Y
RightPositions Y Y Y* Y

VI. CONCLUSION
The development and verification of lexical analyzer has
been an important research area. In this paper, syntax tree is
directly generated from regular expression using Z notation
for verifying lexical analyzer. Identification of errors and
resolving of ambiguities at lexical level is important and a
real challenge in compiler construction because unidentified
errors may grow exponentially to the subsequent phases. The
verification of lexical analyzer is benefited by linking
automata to Z specification. The Z, being abstract in nature
and having computer tool support, is used because it
enhanced reliability and correctness of models of the system.
It is observed that formal specification helped us to make it
possible resolving ambiguities. The specification was
verified and validated using Z/Eves toolset. Several other
tools exist to support the formal specification but Z/Eves is a
powerful one to analyze the specification because of rich
mathematical notations which made it possible to reason
about behavior of the specification more effectively.
A need for such tools is not only in the area of programming
languages but other applications, for example, pattern
recognition and queries in databases can also benefit. For an
accurate processing system, a program must be able to
correctly process a language by obey precise lexical analysis
rules using formal definitions which shows importance of
this research. An exhaustive survey of existing work, on
integration of approaches and verification of systems, was
performed. Some of the interesting and relevant works [20-
28] were found but our approach is different because of
abstract and conceptual level integration of automata and Z
for verification. Formalization of other concepts, useful in
compiler verification, is in progress and will appear soon.

REFERENCES
[1] C. J. Burgess, "The Role of Formal Methods in Software Engineering

Education and Industry," Technical Report, University of Bristol,
UK, 1995.

[2] K. A. Buragga, and N. A. Zafar, "Formal Parsing Analysis of
Context-Free Grammar using Left Most Derivations, ICSEA, 2011.

[3] H. Beek, A. Fantechi, S. Gnesi, and F. Mazzanti, "State/Event-Based
Software Model Checking," Integrated Formal Methods, Springer,
vol. 2999, pp. 128-147, 2004.

[4] O. Hasan and S. Tahar, "Verification of Probabilistic Properties in the
HOL Theorem Prover," Integrated Formal Methods, Springer, vol.
4591, pp. 333-352, 2007.

[5] F. Gervais, M. Frappier, and R. Laleau, "Synthesizing B
Specifications from EB3 Attribute Definitions," Integrated Formal
Methods, Springer, vol. 3771, pp. 207-226, 2005.

[6] J. S. Dong, R. Duke, and P. Hao, "Integrating Object-Z with Timed
Automata," pp. 488-497, 2005.

[7] J. S. Dong, et al., "Timed Patterns: TCOZ to Timed Automata," The
6th ICFEM, pp. 483-498, 2004.

[8] R. L. Constable, et al., "Formalizing Automata II: Decidable
Properties," Technical Report, Cornell University, 1997.

[9] R. L. Constable, et al., "Constructively Formalizing Automata
Theory," Foundations of Computing Series, MIT Press, 2000.

[10] M. Heiner and M. Heisel, "Modeling Safety Critical Systems with Z
and Petri nets," International Conference on Computer Safety,
Reliability and Security, Springer, pp. 361–374, 1999.

[11] H. Leading and J. Souquieres, "Integration of UML and B
Specification Techniques: Systematic Transformation from OCL
Expressions into B," Asia-Pacific Software Engineering Conference,
pp. 495-504, 2002.

[12] H. Leading and J. Souquieres, "Integration of UML Views using B
Notation," Proceedings of Workshop on Integration and
Transformation of UML Models, 2002.

[13] W. Wechler, "The Concept of Fuzziness in Automata and Language
Theory," Akademic-Verlag, Berlin, 1978.

[14] N. M. John and S. M. Davender, "Fuzzy Automata and Languages:
Theory and Applications," Chapman & HALL, 2002.

[15] M. Ito, "Algebraic Theory of Automata and Languages," World
Scientific Publishing Co., 2004.

[16] J. M. Spivey, "The Z Notation: A Reference Manual," Englewood
Cliffs, NJ, Printice-Hall, 1989.

[17] C. Lindig, Random Testing of C Calling Conventions,"
AADEBUG'5, ACM, 2005.

[18] J. A. Anderson, "Automata Theory with Modern Applications,"
Cambridge University Press, 2006.

[19] M. v. d. Brand, A. Sellink, and C. Verhoef, "Generation of
Components for Software Renovation Factories from Context-Free
Grammars," CRE, pp. 144-153, 2001.

[20] M. Balakrishna, D. Moldovan, and E. K. Cave, "Automatic Creation
and Tuning of Context-Free Grammars for Interactive Voice
Response Systems," IEEE NLP-KE, pp. 158 – 163, 2005.

[21] L. Pedersen and H. Reza, "A Formal Specification of a Programming
Language: Design of Pit," Second International Symposium on
Leveraging Applications of Formal Methods, Verification and
Validation, pp. 111-118, 2008.

[22] D. P. Tuan, "Computing with Words in Formal Methods," Technical
Report, University of Canberra, Australia, 2000.

[23] A. Hall, "Correctness by Construction: Integrating Formality into a
Commercial Development Process," Praxis Critical Systems Limited,
Springer, vol. 2391, pp. 139-157, 2002.

[24] D. K. Kaynar and N. Lynchn, "The Theory of Timed I/O Automata,"
Morgan & Claypool Publishers, 2006.

[25] D. Jackson, I. Schechter, and I. Shlyakhter, "Alcoa: The Alloy
Constraint Analyzer," Proceedings of The 22nd International
Conference of Software Engineering, pp. 730-733, 2000.

[26] D. Aspinall and L. Beringer, "Optimisation Validation," Electronic
Notes in Theoretical Computer Science, vol. 176, pp. 37–59, 2007.

[27] S. Briaisa and U. Nestmannb, "A Formal Semantics for Protocol
Narrations," Theoretical Computer Science, vol. 389, pp. 484–511,
2007.

[28] L. Freitas, J. Woodcock, and Y. Zhang, "Verifying the CICS File
Control API with Z/Eves: An Experiment in the Verified Software
Repository," Science of Computer Programming, vol. 74, pp. 197-
218, 2009.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

http://hvg.ece.concordia.ca/Publications/Confrences/IFM%2707.pdf
http://hvg.ece.concordia.ca/Publications/Confrences/IFM%2707.pdf

	I. INTRODUCTION
	II. An Introduction to Z notation
	III. Verifying Lexical analyzer
	IV. Formal specification
	A. Regular Expressions
	B. Tree Construction
	C. Formal Specification of Operators

	V. Model Analysis
	VI. Conclusion
	References

