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Abstract—A theoretical study of pulsatile blood flow through
a constricted porous channel in the presence of an external
magnetic field by considering the incompressible Newtonian
fluid model is investigated. The influence of magnetic field on
the flow is studied using the dimensionless magnetic parameter
M and a Darcian linear impedance for low Reynolds number
is taken into account in the transformed momentum equation.
A perturbation method is employed to solve the governing
differential equations by using a small perturbation parameter
ϵ (such that 0 < ϵ << 1), which is incorporated in the
time dependent transpiration velocity (suction/ injection). Using
appropriate boundary conditions analytical expressions for the
velocity distribution, volumetric flow rate and wall shear stress
have been derived and the numerical results are presented
graphically for different values of the physical parameters of
interest.

Index Terms—Pulsatile flow, porous channel, Time dependent
suction/ injection

I. INTRODUCTION

MATHEMATICAL modeling of blood flow through a
constricted porous channel/ vessel is of great con-

cerned for clinical scientists and has therefore drawn serious
attention of researchers. It is known that stenosis (narrowing
of artery) is a dangerous disease and is caused due to the
deposition of cholesterol and other various substances in an
arterial wall form a plaque which grow inward and restrict the
flow of blood through the lumen of the artery. If this disease
takes a severe form, it may lead to morbidity, fatality and
serious circulatory disorders. As a result of such undesirable
formation at the endothelium of the vessel wall, reduction of
regular blood flow is likely to take place in the constricted
region of the channel/vessel. To understand the effects of
stenosis in the lumen of an artery, many researchers ([8],
[4] and [11]) have investigated the flow of blood through
arteries by considering blood as a Newtonian fluid. However,
most of the studies ([13], [26] and [12] ) show that, in the
vicinity of a stenosis, the shear rate of blood is low and the
blood behaves like a non-Newtonian fluid. It is also worth
while to mention here that although blood is non-Newtonian
suspension of cells in plasma, [8] remarked that for vessels
of radius greater than 0.025 cm, blood may be considered as
a homogeneous Newtonian fluid. Several studies ([21], [27]
and [5]) of physiological fluid dynamics through stenosed
arteries have been carried out to evaluate the flow pattern
under steady and pulsatile conditions by treating blood as a
Newtonian fluid.
It has been observed that blood flow in the human circulatory
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system depends upon the pumping action of the heart, which
in turn produces a pulsatile pressure gradient throughout the
system. [26] theoretically analyzed the pulsatile flow of blood
in a stenosed artery, where the non-Newtonian behavior
of blood was taken to be of Herschel-Bulkley type. Some
excellent studies on pulsatile blood flow have made by [29].
[30] studied the fluid dynamics of pulsatile flow past a single
cylinder for a non-Newtonian Casson fluid. [10] carried out
the pulsatile flow of blood in an artery by considering the
effects of body acceleration. [23] modeled the blood flow
through arterial stenosis by treating blood as a couple stress
fluid. [22] proposed a mathematical model for pulsatile blood
flow in a constricted tube using the Power-law fluid. The
effect of externally imposed body acceleration and magnetic
field on peristaltic flow of blood through an arterial segment
having stenosis has been investigated by [25]. Their studies
pertains to a situation in which blood obeying micropolar
fluid model, where the effect of heat transfer phenomena
has been taken into account.
In the recent past, engineers and scientists became inter-
ested in the influence of magnetic field on blood flows
with a view to utilizing MHD (magnetohydrodynamic) in
controlling blood flow during surgery and also establishing
the effects of magnetic field on blood flows in astronauts,
citizens living in the vicinity of electromagnetic towers etc.
Since blood consists of a suspension of red blood cells
containing hemoglobin, which contains iron oxide, it is quite
apparent that blood is electrically conducting and exhibits
magnetohydrodynamic flow characteristics. Bhargava et al
[1] numerically studied the pulsatile flow and mass transfer of
an electrically conducting Newtonian biofluid via a channel
with porous medium. The flow of blood through arteries in
the presence of magnetic field under different physiological
conditions were reported in ([16], [20]). Steady laminar flow
of blood through a porous medium in an arterial segment
having double stenoses under the influence of externally ap-
plied magnetic field have been carried out by [17], [18] using
numerically as well as analytically by means of Frobenius
Method. The potential use of such MHD principles in various
arteries have explored by [14], [15], who showed that for
unsteady flow of blood in an artery of circular cross-section,
a uniform magnetic fields alters the flow rate of blood.
[24] have investigated using a vorticity formulation of the
MHD oscillatory flows in variable cross-sectional channels,
reporting a distinct reduction in velocity with a strong applied
magnetic field. Many biological tissues such as bones and
vascular tissues, the renal system as well as the blood vessels
containing fatty deposits are assumed to be porous by nature.
[7] have presented a detailed review on heat and fluid flow in
a porous media having physiological applications. Pulsatile
flow of blood through a stenosed porous medium has been
studied by [3] under the influence of body acceleration.
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Fig. 1. A schematic diagram of the problem

Very recently [9] theoretically studied the pulsating flow of
a hydromagnetic fluid between permeable beds while, [28]
have analyzed same problem without considering the effects
of magnetic field.
In the present paper, we have investigated the steady as well
as transient flow regime for Newtonian hydromagnetic blood
flow in a constricted porous channel. The study pertains to
a situation where a magnetic field is applied in a direction
transverse to the direction of flow. Of specific interest is to
determine the velocity profile, the variation of skin-friction
and the flow rate with axial distance and with time for
different values of the magnetic number, Reynolds number
and Darcian porous parameter as well as for different depths
of the constriction. The study also bears a potential useful
for evaluating the role of porosity of the constricted channel
wall.

II. FORMULATION OF THE PROBLEM AND ITS SOLUTION

Let us consider the flow of blood in laminar, incom-
pressible, magnetohydrodynamic and pulsatile flow through
a two- dimensional constricted channel with porous walls
containing a non-Darcian porous material. The channel walls
are located at a distance 2H apart with reference to a
cartesian coordinate system (x, y, t), where x defines the
longitudinal coordinate in the direction of flow, y be the
transverse coordinate perpendicular to x and t being time. A
uniform magnetic field of strength B0 is applied transverse
to the flow direction (cf. Fig. 1). The governing equations
for the pulsating porous hydromagnetic flow of blood by
neglecting induced magnetic field are taken to be
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where (u, v) denotes the velocity components along x and
y direction respectively, p the fluid pressure, ν the kinetic
viscosity, σ the electrical conductivity, B0 the strength of
uniform magnetic field and k denotes the permeability of
porous medium.
We assume that the fluid is injected/ sucked off through the
channel walls with a time dependent velocity V is given by
([20] )

V = V0

(
1 + ϵAeiωt

)
(4)

Where V0 be the uniform transpiration velocity (for injection
V0 > 0 and for suction V0 < 0) and the product ϵA is
necessarily less than unity.
We also assume that the length of the constricted channel
is much greater than the height of the channel. Since the
fluid medium is filled with porous material and the normal
component of velocity v = V is independent of x and y and
thereby continuity equation (1) reduces to ∂u

∂x = 0. Therefore,
taking into consideration that the fluid flow takes place only
along the axis of the channel and denoting the velocity by u,
where u = u(y, t) and then the equation (3) simply reduces
to ∂p

∂y = 0.
Owing to the above mentioned assumptions the axial mo-
mentum equation reduces to
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Since the fluid is driven by the pumping action of the heart,
which in turn produces a pulsatile pressure gradient and can
be approximated as

−∂p

∂x
= Ps + ϵP0cos(ωt), (6)

where P0 and Ps are the pulsatile amplitude and steady
component of the pressure gradient respectively.
The geometry of the stenosis which is assumed to be
symmetric is given by

h′(x) = H

[
1− δ

2

{
1 + cos
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l0

(
x− d− l0

2

)}]
a(t), (7)

d ≤ x ≤ d+ l0,

= Ha(t), otherwise

in which,

a(t) = 1− {cos(2πT )− 1}ke−2πkT .

where δ be the depth/ height of the stenosis, l0 be the length
of the stenosis, d be the distance of onset of the stenosis
from the y- axis, h(x) be the variable height of the channel
at the stenosed portion, T the non-dimensional time and k
denotes the amplitude of oscillation.
Considering the flow to be symmetric about the center line
y = 0 of the channel, we focus our attention to the flow in
the region 0 ≤ y ≤ h(x) = h′(x)

H only.
The corresponding boundary conditions are prescribed as
follows:

u = 0 at y = h(x), (8)

∂u

∂y
= 0 at y = 0 (9)

Let us introduce the following non-dimensional variables
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Using these dimensionless variables in equation (5) and
dropping asterisks, we obtain
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ν
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ν
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σB2
0H

ρV0
and λ =

kV0

νH

We assume that the solution of the flow problem takes in the
following form

u(y, T ) = u0(y) + ϵu1(y)e
i2πT (11)

where u0 and u1 are the velocity of steady state and transient
state respectively.
Substituting (11) into the equations (8) - (10) we obtain the
differential equations along with the boundary conditions in
steady state and transient state as follows:
(i) Steady state:

1

Re

d2u0

dy2
− du0

dy
−

(
M +

1

λ

)
u0 = −Ps (12)

u0 = 0 on y = h(x), (13)
du0
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= 0 on y = 0.
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)
u1 = A

du0
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−P0 cos(2πT )e
−2iπT (14)

u1 = 0 on y = h(x), (15)
du1

dy
= 0 on y = 0.

Now, by solving equations (12) and (14) subject to the
boundary conditions (13) and (15) we obtain

u0 = C1e
λ1y + C2e

λ2y + E (16)

and

u1 = C3e
λ3y + C4e

λ4y + F1e
λ1y + F2e

λ2y + F3 (17)

where C1, C2, C3, C4, λ1, · · · etc. given in the appendix.
Substituting the expressions of u0 and u1 from equations (16)
and (17) in (11), we obtain an expression for the velocity
u(y, T ) as

u(y, T ) =
(
C1e

λ1y + C2e
λ2y + E

)
+[

C3e
λ3y + C4e

λ4y + F1e
λ1y + F2e

λ2y + F3

]
ϵei2πT (18)

After having determine u, one can obtain the volumetric flow
rate Q, defined by

Q =

∫ h(x)

0

u(y, T )dy (19)

which on integration yields

Q = (C1T1 + C2T2 + Eh(x)) +

ϵei2πT (C3T3 + C4T4 + T1F1 + T2F2 + F3h(x)) (20)

The non-dimensional wall shear stress is given by the relation

τw =

[
∂u

∂y

]
y=h(x)

(21)

Use of (18) in equation (21), the wall shear stress can be
written as

τw =
(
C1λ1e

λ1h(x) + C2λ2e
λ2h(x)

)
+

ϵei2πT
(
C3λ3e

λ3h(x) + C4λ4e
λ4h(x) +

F1λ1e
λ1h(x) + F2λ2e

λ2h(x)
)

(22)

III. RESULTS AND DISCUSSION

The primary object of this investigation has been to study
the flow of blood in a constricted porous channel subject
to the pulsatile pressure gradient in the presence of an
applied magnetic field, where the transpiration velocity as-
sumed to be periodic. The analytical expressions for velocity
distribution, volumetric flow rate and the wall shear stress
have been derived in the previous section and are computed
numerically by taking into account the real part of such
expressions. The numerical solutions have been illustrated
based upon the following data with non-dimensional form
available in the scientific literatures ([30], [1], [19] and [2]):
Re = 1, 5, 10, 15; α = 0.5, A = 2, 5; ϵ =
0.01, P0 = 7, Ps = 10, M = 0, 2, 4, 6; k = 0.01, λ =
0.1, 0.3, 0.5, 1.0; L = 5.0. The study of [6] reported
an analysis of the pressure changes in the vessels of human
vascular under the action of a strong magnetic field within a
range of 2.3 to 4.7 Tesla. In all numerical computations, the
solutions have been obtained for the general case by adopting
a particular time T=1.0. The blockage of the channel was
examined in three different cases, by taking δ = 0.10,
δ = 0.25 and δ = 0.50. These three values were taken
to present respectively the mild and moderate stages of the
channel constriction. In the flow geometry of the channel,
x = d + l0

2 indicates the position at the maximum depth of
the constriction called throat of the stenosis.
Figs. 2-6 give the variation of pulsating axial velocity along
with the dimensionless transverse coordinate for different
values of the physical parameters. It reveals from Fig. 2 that
the axial velocity decreases with the increase of the magnetic
field strength. It indicates that the blood velocity can be
reduced upto 20% - 30% by applying sufficient strength of
magnetic field. Thus the results for a reduction in blood
velocity can be used for surgical patient during surgery.
While the reversal trend is occurring in Fig. 3, which depicts
the influence of porosity on the axial velocity u. It has been
observed that increasing values of λ corresponds to a rise
in permeability and therefore, physically implies that the
permeating fluid receives less resistance to flow.

It is interesting to note from Fig. 4 that maximum velocity
occurs at the central line of the channel for all values of the
Reynolds number Re, however in the vicinity of the channel
wall the velocity increases with the increase of the Reynolds
numbers Re. From this figure it is interesting to note that
no change is observed in the axial velocity at the central
region of the channel for Reynolds number Re > 3. Figs. 5
and 6 represent the velocity profiles at different locations of
the channel constriction as well as for different depths. Fig.
5 depicts that the axial velocity strongly decreases near the
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Fig. 2. Axial velocity profiles with dimensionless transverse coordinate
at the throat of the stenosis for different values of the magnetic numberM ,
when Re = 1, α = 0.5, T = 1.0, λ = 0.3, δ = 0.25
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Fig. 3. Axial velocity profiles with dimensionless transverse coordinate
at the throat of the stenosis for different values of the Darcian porosity
parameter λ when Re = 1, α = 0.5, T = 1.0,M = 2, δ = 0.25
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Fig. 4. Variation of axial velocity for different Reynolds number with
α = 0.5, T = 1.0, λ = 0.3, δ = 0.25,M = 2
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Fig. 5. Variation of velocity profile at different depth of the stenosis with
Re = 1, α = 0.5, T = 1.0, λ = 0.3,M = 2

channel wall as well as in the central line of the channel with
the increasing effects of constriction height. While from Fig.
6 we observe that the velocity is least at the throat of the
stenosis and is maximum at the onset as well as outset of
the stenosis.

The variation in volumetric flow rate of blood is illustrated
through Figs. 7-9 along the longitudinal distance of the
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Fig. 6. Variation of velocity profile at different location of the stenosis
with Re = 1, α = 0.5, T = 1.0, λ = 0.3,M = 2, δ = 0.25
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Fig. 7. Variation of volumetric flow rate along with the axial distance
for different magnetic number M , when Re = 1, A = 2, α = 0.5, T =
1.0, λ = 0.3, δ = 0.25
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Fig. 8. Variation of volumetric flow rate for different height of the stenosis
with Re = 1, A = 2, α = 0.5, T = 1.0, λ = 0.3,M = 2

2.0 2.2 2.4 2.6 2.8 3.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

x

Q

Λ=1

Λ=0.5

Λ=0.3

Λ=0.1

Fig. 9. Variation of volumetric flow rate along the longitudinal distance
for different porosity parameter λ, with Re = 1, A = 2, α = 0.5, T =
1.0, δ = 0.25,M = 2, x = d+ l0

2

channel. The rate of blood flow has reducing effect with
the increasing magnetic field strength. The flow rate is also
found to be minimum in all cases at the throat of the stenosis.

One can further note that the volumetric flow rate de-
creases with the height of the stenosis and increases with the
increase of the Darcian porosity parameter λ. Figs. 10 and 11
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Fig. 10. Variation of volumetric flow rate with time for different height of
the stenosis δ, when Re = 1, A = 2.0, α = 0.5, T = 1.0, λ = 0.3,M =
2, x = d+ l0
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Fig. 11. Variation of volumetric flow rate with time for different magnetic
number M , when Re = 1, A = 2, α = 0.5, δ = 0.25, λ = 0.3
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Fig. 12. Distribution of wall shear stress for different values of the magnetic
number M , when Re = 10, α = 0.5, A = 5, λ = 0.3, T = 0.5, δ = 0.25

give the variation of volumetric flow rate with time in cycle.
The volumetric flow rate is found to oscillates periodically
with time and the magnitude of the flow rate decreases with
the increase of the magnetic number M . It is also reveal that
for a high value of Reynolds number as well as for severe
stages of the channel constriction the volumetric flow rate
becomes negative and hence physically implies that at high
Reynolds number vorticity may appear at the downstream of
the stenosis. Although our study is based on the mild stenosis
and for low Reynolds number, consideration of unidirectional
flow may valid.
The distribution of wall shear stress along the axial distance
as well as for time in cycle for different values of the
rheological parameters are shown in Figs 12-16. It is well
known that, when the shear stress generated on the wall is
high, the vessel wall may be damaged, leading to the intimal
thickening. While in the case of low shear stress at the wall,
mass transportation takes place, giving rise to deposition of
cholesterol and other substances. It should be noted from
Fig. 12 that wall shear stress decreases as the values of
M increases, while from Fig. 13 that the wall shear stress
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Fig. 13. Distribution of wall shear stress for different height of the stenosis
with Re = 10, α = 0.5, A = 5, λ = 0.3, T = 0.5,M = 2
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Fig. 14. Distribution of wall shear stress along the length of the stenosis for
different λ with Re = 10, α = 0.5, A = 5,M = 2, T = 0.5, δ = 0.25
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Fig. 15. Variation of wall shear stress with time for different depth of the
stenosis when Re = 10, α = 0.5, A = 5, λ = 0.3,M = 2
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Fig. 16. Variation of wall shear stress with time for different values of
the magnetic number M , when Re = 5, A = 5, α = 0.5, T = 0.5, λ =
0.3,M = 5, δ = 0.25

increases with the increase of the stenosis height.
It is interesting to note from Fig. 14 that the Darcian

parameter λ has an enhancing effect on the wall shear stress.
Results presented in Figs. 15 and 16 show that the wall

shear stress oscillates periodically with time and that the
magnitude of the wall shear stress decreases with the increase
in the stenosis depth δ and magnetic parameter M .
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IV. CONCLUSION

In the present theoretical study, an attempt has been made
to examine the effects of low Reynolds number, Darcian
porosity parameter and an external magnetic field on pulsat-
ing blood flow in a constricted channel by assuming time
dependent transpiration velocity. The detailed illustration
of the flow characteristics have been made numerically to
perform some graphical presentation of the computed results.
The study shows that the instantaneous flow characteris-
tics are significantly affected by magnetic number, porosity
parameter as well as by Reynolds number. It reveals that
increasing magnetic field serves to reduce blood flow and
increase in Reynolds number as well as porosity parameter
increases the flow velocity. The increasing values of the
constriction height has an enhancing effect on the wall shear
stress and has reducing effect on the volumetric flow rate of
blood. It further reveals that by the application of an external
magnetic field bears the potential to reduce the flow of blood,
wall shear stress and the volumetric flow rate. On the basis of
the present results, it can be concluded that the flow of blood
can be controlled by the application of sufficiently strong
magnetic field. Thus, this investigation throws towards the
application in clinical treatment of haemodynamic diseases
such as hypertension and atherosclerosis.

APPENDIX A

C1 = Eλ2
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D2
, F3 = P0cos(2πT )e−2πiT(

M+ 1
λ+ iα2

Re

)
D1 = λ2

1 − λ1Re−Re
(
M + 1

λ + iα2

Re

)
,

D2 = λ2
2 − λ2Re−Re

(
M + 1

λ + iα2

Re

)
T1 = eλ1h(x)−1

λ1
, T2 = eλ2h(x)−1

λ2
,

T3 = eλ3h(x)−1
λ3

, T4 = eλ4h(x)−1
λ4

,
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