
 

 

Abstract— In this paper a new implementation of nonlinear 

composite filters for image recognition in parallel hardware is 

proposed. The architecture is designed for a Field 

Programmable Gate Array (FPGA) device.  The filter design is 

based on logical operations and the correlation is computed 

with a nonlinear operation called morphological correlation. 

The proposed architecture reduces the time required for the 

nonlinear operations in the spatial domain. Simulation results 

are provided and discussed. 

 
Index Terms—Parallel processing, FPGA, nonlinear filters, 

pattern recognition, morphological correlation  

 

I. INTRODUCTION 

attern recognition, especially image recognition, has 

been an area of intensive research over the last decades. 

The main reason for this is the great amount of 

applications for recognition systems. Since VanderLugt 

introduced the Matched Spatial Filter (MSF) in 1964 [1], 

correlation methods have been used extensively the last 

years for image recognition [2]-[10].  Firstly, correlation 

methods exploit all information from images in the 

recognition process. Besides correlation is shift-invariant 

and has solid mathematical foundation. In this case the basic 

recognition procedure is: 

 Design a template (filter) with one or several 

training images. 

 Correlate the filter with an input test image. 

 Establish a threshold at the correlation output. 

A correlation value greater than threshold indicates that 

target is located at coordinates of the correlation peak.  

Correlation filters can be designed by optimizing one 

performance criteria with linear techniques. In addition, 

information from several distorted training objects could be 

incorporated. For example, synthetic discriminant functions 

(SDF) [2], [3] and minimum average of correlation energy 

(MACE) [4] filters can be used for distortion-invariant 

multiclass pattern recognition. In addition, an adaptive 

approach has been proposed [5], in order to reject other 

objects from scenes. However, linear filters are sensitive to 

most kind of real noise. On the other hand, several 

approaches of nonlinear filter design have been proposed 

too [6]-[10]. Recently, nonlinear composite filters for 
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distortion-invariant pattern recognition were introduced [9], 

[10]. The filters are designed as a logical combination of 

binary objects. Correlation is computed among the filter and 

a test scene with a nonlinear operation called Morphological 

Correlation (MC) [11]. These kinds of filters have 

demonstrated a good discrimination capability and noise 

tolerance. With the help of threshold decomposition [12], 

this technique can be applied to grayscale images as well.  A 

drawback of this process is the high computational cost for 

large images. Nevertheless, the calculation of the nonlinear 

correlation can be parallelized by using specialized 

hardware.  

In this paper we propose the implementation of the 

nonlinear filtering process in parallel hardware. The aim is 

to reduce the processing time. The architecture is intended 

for a Field Programmable Gate Array (FPGA). FPGA´s 

have been used in several applications of parallel processing 

executing the more time consuming tasks [13]-[16]. 

Simulation results of proposed system are provided and 

discussed. The paper is organized as follows: Section II 

describes composite nonlinear filters. Section III presents an 

FPGA-based architecture. In section IV computer 

simulations are provided and discussed. Section V 

summarizes our conclusions.  

 

II. NONLINEAR FILTERING  

A. Basics 

The proposed technique is a locally adaptive processing 

of the signal in a moving window. The moving window is a 

spatial neighborhood containing pixels surrounding 

geometrically the central window pixel. The neighborhood 

is referred to as the W-neighborhood. The shape of the W-

neighborhood is similar to the region of support of the 

target. The size of the neighborhood is referred to as W , 

and it is approximately taken as the size of the target. In the 

case of non-stationary noise or cluttered background (space-

varying data), it is assumed that the W-neighborhood is 

sufficiently small and the signal and noise can be considered 

stationary over the window area.  

B. Threshold Decomposition 

Suppose a gray-scale image I(m,n) with Q levels of 

quantization, where (m,n) are the pixel coordinates. 

According to the threshold decomposition concept [12], the 

image I can be represented as a sum of binary slices  
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here   , , 1,... 1qI m n q Q   are binary images obtained by 

decomposition of the greyscale image with a threshold q, as 

follows  

 

 
 1,   ,

,
0,        

q if I m n q
I m n

otherwise

 
 
 

 



C. Filter Design 

Now, assume that there are M reference objects to be 

recognized (true class) and N objects to be rejected (false 

class). We construct a filter as a logical combination of the 

training images:  
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Where   , , 1... 1, 1...q

iT m n q Q i N  
 
are the binary 

slices obtained by threshold decomposition of the true class 

images.
 

  , , 1... 1, 1...q

jF m n q Q j M    are the logical 

complement of binary images obtained by threshold 

decomposition of false class images training images.  

represents the logical intersection: the result at coordinates 

(m,n) is 1 if the corresponding pixels of both planes are 

equal to 1; otherwise, the result is 0.  represents the 

logical union: the result at coordinates (m,n) is 0 if the 

corresponding pixels of both planes are equal to 0; 

otherwise, the result is 1. The neighborhood W is taken as 

the region of support of the composite filter.  

D. Morphological Correlation 

Let {H(m,n)} and  {S(k,l)} be a template and a test scene 

respectively, both with Q levels of quantization. The local 

nonlinear correlation (morphological correlation) between a 

normalized input scene and a shifted version of the target at 

coordinates (k,l) can be defined as 
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Where c(k,l) is the local nonlinear correlation at the 

coordinates (k,l). min(x,y) is the minimal value among x and 

y. The sum is taken over the W-neighborhood. a(k,l) and 

b(k,l) are local normalizing coefficients, which take into 

account unknown illumination and bias of the target, 

respectively. The coefficients estimates are given by: 
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It can be shown that the nonlinear correlation in (4) can 

be computed with the binary slices obtained from threshold 

decomposition of the input scene and the filter as  
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where   ,qS k l  and   ,qH m n  are binary slices of the 

gray-scale images obtained by threshold decomposition of 

the normalized input scene       . , ,a k l S k l b k l   and the 

template   ,H m n , respectively.  

III. HARDWARE 

As can be seen, the nonlinear correlation process is 

computationally expensive. Suppose a test scene of KxL 

pixels and a template of MxN pixels; then computation of 

correlation requires KxLxNxM operations for each binary 

slice. On the other hand, these operations can be computed 

in a parallel way.  

A. Field programmable gate arrays 

Morphological correlation involves a high computational 

cost for a sequential computer. However, a faster response 

can be achieved by using parallel processing. A suitable 

device for this purpose is a field programmable gate array 

(FPGA). Figure 1 shows this basic structure of an FPGA: 

the device consists of an array of programmable basic cells 

(shown in white), an interconnect matrix surrounding the 

basic cells (shown in gray) and a set of input/output 

programmable cells (shown in black) [12]. Modern devices 

could contain millions of logic cells for a low cost. 

 

 

Fig. 1.  Basic structure of a field programmable gate array (FPGA).  

 

All kind of cells and the interconnections can be 

reprogrammed. Because of its capacity of reconfiguration, 

these kinds of device are a versatile choice for experimental 

designs. In addition, its high capacity and low cost make 

them suitable for implementation of specialized hardware. 

These kinds of devices have been used before in several 

applications [13]-[16]. 

B. Proposed architecture 

Figure 2 is a block diagram of the proposed architecture. 

RAM1 memory stores the entire binary test scene, RAM2 

stores the binary template and RAM3 stores the correlation 

output. The size of RAM1 and RAM3 are equal to the size 
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of the test scene. Dimensions of the template image are M 

rows and N columns. The size of RAM2 equals the size of 

the template. All data buses are M bits wide. The AND gates 

bank contains M units that execute the operation of 

intersection among an entire row of both, the local test scene 

and the template images. An adder unit calculates 

simultaneously the sum of correlation, which is entered to 

the accumulator unit. The final result is stored in the RAM3 

memory. Besides, an address generator, which is clock 

synchronized, computes the memory allocation sequences to 

read data and store the results of the correlation process. 

Only a counter unit is needed to compute the address of 

RAM3 memory.   

 

 
 

Fig. 2.  Block diagram of the proposed architecture. All memory banks are 

clock synchronized.  

  

C. Operation 

The basic operation of proposed hardware is as follows:  

The address of the first pixel of test scene is loaded and data 

is read from RAM1 memory. Since bus is M bits wide, an 

entire column is loaded in a single clock cycle from RAM1 

and RAM2. In this way, the whole intersection among the 

local image and the template is processed in N clock cycles. 

The adder unit processes in parallel the M bits of each 

column. In consequence, not additional time is required for 

the sum. The partial result of each column sum is 

sequentially stored in the accumulator unit. Once processed 

a local image the address generator computes the address for 

storing the result in RAM3 memory and for reading the next 

local image from RAM1 memory. Besides, the counter unit 

is restarted to read the first column of template again. This 

procedure is repeated until all pixels of the test scene are 

processed. 

Note that this procedure requires only O(KxLxN) 

operations. In addition, not additional time is required for 

executing arithmetic operations and loading data. The 

proposed architecture can be easily modified for larger 

images. 

IV. COMPUTER SIMULATIONS 

In this section computer simulations are provided. Figure 

4 shows a test scene with two objects embedded. The 

template is 24x36 pixels and the test scene is 256x256 

pixels. Both are grayscale images with 256 levels of 

quantization. The filter is designed including both 

butterflies. The target is the butterfly in the left side and the 

other butterfly is included to be rejected. First, threshold 

decomposition is executed by a computer. Next, each binary 

image is processed in the proposed architecture. Finally the 

correlation results are read from computer and normalized.  

Figure 5 shows the final correlation output obtained. As 

can be seen, the correlation plane contains a sharp peak of 

magnitude equal to one at central coordinates of the target. 

On the other hand, at central coordinates of the false object 

the correlation value obtained is zero and no other sharp 

peak is distinguished. Note that the filter is able to detect the 

target embedded into the cluttered background and with a 

similar object in the same scene. 

 

 
 

Fig. 3.  Test scene including target (left butterfly) and an object to be 
rejected (right butterfly).  

 

 
 

Fig. 4.  Correlation plane obtained with proposed architecture for the test 

scene on figure 3.  

 

With the proposed architecture the number of clock 

cycles required to process the entire image is only 3% of the 

cycles required with a sequential processor. In order to 

compare performance of proposed system with a sequential 

processor, several tests were executed in a personal 

computer. A 1.6 GHz sequential processor was utilized. 

Results of processing time in the personal computer were 

averaged. A 200 MHz FPGA was selected for the 

comparison. Because of the difference of speed among the 

processors, the interaction with the computer of FPGA and 

other factors, the time required to process an entire image 

with the proposed architecture was 50% of that required 

with the sequential processor. However, for largest images 

this ratio can be improved at the cost of more memory and 

gates on the FPGA device.   
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V. CONCLUSION 

In this paper was presented a new architecture designed to 

perform nonlinear correlation for pattern recognition. The 

kind of filters employed has demonstrated robustness to 

non-Gaussian noise and good discrimination capability. 

Besides, the proposed architecture performs the most 

demanding time tasks of the correlation process. Moreover, 

the time consumption can be reduced by increasing the 

memory in such way that more correlations can be executed 

simultaneously. The proposed architecture is flexible and 

can be easily adapted to other sizes of images. Future work 

includes processing of the entire grayscale image into the 

FPGA device.   
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