

Abstract—Nowadays robot are widely used in many fields.

Recognizing its importance, robotics course has been included

as part of Engineering and Computer Science undergraduate

curriculum. Teaching students using physical robots can be an

expensive task. Therefore the alternate solution is to utilize

computer simulation. This paper describes our experience on

developing an educational prototype mobile robot simulation

using Microsoft Robotics Studio (MSRS) utilizing its Visual

Simulation Environment (VSE) starts from creating the mobile

robot, integrating into the environment and controlling the

behaviour.

Index Terms—Microsoft Robotics Studio, robot simulation,

robotics, virtual environment

I. INTRODUCTION

HE robotics industry emerged and is developing in

much the same way that the computer business did 30

years ago; it is envisioned that in the near future robotic

devices will become a nearly ubiquitous part of our day-to-

day lives [1]. Apart from that, robotics has been shown by a

number of researchers to be motivating and beneficial in

teaching science and technology [2]. Teaching students

using physical robots can be an expensive task and only

limits the usage of robot only during lab hours.

A. Robot Simulation

Generally, simulation plays an important role in the field

of robotics. Simulations permits inexpensive and less time

consuming experiments. Countless number of experiments

can be conducted, modifications in the robots dynamics can

be made, and changing and rebuilding experimental

environment can be done in the simulation. These allow

researchers and students to perform exhaustive experiments

without the worry of damaging the actual robot. The robot

can be tested, and the virtual model can be finely tuned to

replicate similar performances on equivalent tests. Another

important attribute of simulations is repeatability; which

allows for simplified debugging because the identical

Manuscript received March 23, 2011.

Y. Yusof is a lecturer with the Universiti Kuala Lumpur Malaysia
France Institute, 43650 Bandar Baru Bangi, Selangor, Malaysia (phone:

+603-8926-2022; fax: +603-8925-8845; e-mail:

yusman@mfi.unikl,edu.my).
M. F. Abu Hassan is a lecturer with the Universiti Kuala Lumpur

Malaysia France Institute, 43650 Bandar Baru Bangi, Selangor, Malaysia.

(email: fadzil@mfi.unikl,edu.my).
N. J. Mohd. Saroni is a BET Industrial Automation and Robotics student

at Department of Industrial Automation, Universiti Kuala Lumpur Malaysia

France Institute.
W. M. F. Che Wan Azizan is a BET Industrial Automation and Robotics

student at Department of Industrial Automation, Universiti Kuala Lumpur

Malaysia France Institute.

situation can be precisely generated to trigger a known error

and later check the solution. In addition to these, all vital

data can be logged. This gives researchers and students an

understanding of inconsistencies in their algorithm

performance.

B. MSRS Simulation

In this paper we present the feasibility studies done on

MSRS as a tool and platform for building a customized

educational simulation based on an actual mobile robot; the

MFIBots shown in Fig. 1. The focus will be on utilizing and

exploring the MSRS components and features in developing

mobile robot simulation.

II. RELATED WORK

Almost every field in engineering make use of and reap

the benefits of computer simulations. Robotics is no

exception. At present there are several robot simulators

ranging from open source and free to commercial and

proprietary software. The level of simulation differs

considerably among the simulators. Some allows the user to

specify robot behaviours or plans, while others can be used

to examine the exact path trajectory driven by a robot. A

superior robot simulator must both support simulation and

allow robot to interacts with the environments i.e. permit

sensing and react to its environment changes through

sensors and actuators. Followings are a short survey done on

simulators offering these features.

A. Survey of Robot Simulators

Urban Search and Rescue Simulation (USARSim): A

mobile robot simulator initially developed to focus on

differential drive systems for wheeled robots [3]. The

simulation attracted lots of interest with wide community

support and the initial platform was enhanced significantly.

At present, the available version supports wider range of

robots and sensors, which includes underwater vehicles,

legged platforms, and humanoids. Users of this simulation

Development of an Educational Virtual Mobile

Robot Simulation

Y. Yusof, M. F. Abu Hassan, N. J. Mohd. Saroni, and W. M. F. Che Wan Azizan

T

Fig. 1. MFIBots – physical model of simulated mobile robots.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

must learn Unrealscript code, a proprietary object oriented

language with syntax resembling C++ and Javascript.

Player/Gazebo: This simulator was developed at the USC

(University of Southern California) [4, 5]. The Player

project provides a network server platform for programming

real robots and is one of the widely used in the robotics

community. Gazebo is a 3D simulator with the ability to

simulate several Player-based Robots and the simulation

environment is built on top of OGRE (Object-Oriented

Graphics Rendering Engine). Gazebo can be standalone, or

accessed through the Player server. Coupled with Player,

Gazebo offers a great multi-robot simulation in 3D

environment. Player/Gazebo components are available

under the GPL license. They both are a powerful package

that relies on several complex components and thus require

some time to learn.

WebotsTM [6]: A commercial simulator runs on

Windows, Linux and Mac OS X which is intended for

researchers and teachers interested in mobile robot.

Developed by Swiss Federal Institute of Technology in

Lausanne (EPFL) and initially used for mobile robotics

prototyping simulation, allows transfer of simulated

algorithm to physical Kephera robots only. Later, it offers

support also for other robot platforms like the Sony Aibo, a

humanoid platform, and several differential drive mobile

robots. It also allows custom robot design to be simulated

using a specialized authoring tool. The cost of purchasing is

the limitation of using this software is due to its proprietary

nature.

EyeSim - EyeBot Simulator [7]: A multiple mobile robot

simulator. The environment modelling is 2½D, while 3D

sceneries are generated with synthetic images for each

robot’s camera view of the scene [7]. Robot application

programs are compiled into dynamic link libraries that are

loaded by the simulator. A virtual control panel (equivalent

to the LCD display and buttons on the real EyeBot

controller) allows communication via the robot's user

interface. The simulator is freely available over the internet.

It does not allow user to design custom robot and the sensors

availability only limited to what’s being offered inside the

simulator.

Microsoft Robotic Studio (MSRS): A windows based

simulator which utilizes Ageia’s PhysX physics engine.

Simulations can be programmed with MS Visual Studio C#.

Key advantages of MSRS are the concurrency and

coordination run¬time (CCR) and decentralized software

services (DSS) which supports distributed robotic

applications. The subsequent section will further discuss on

MSRS simulation features.

III. MICROSOFT ROBOTICS DEVELOPER STUDIO

MSRS is a MS Windows-based environment for robot

control and simulation, which aimed at academic

researchers, hobbyist, and commercial developers and

handles a wide variety of robot hardware [8]. Apart from

being able to work in familiar MS Windows environment,

MSRS is programmed using C# and runs inside Visual

Studio Express Integrated Development Environment which

are free. This makes the development and debugging much

easier. Besides that, MSRS offers features which include:

Concurrency and coordination runtime (CCR): A feature

that addresses the issue of concurrencies. The CCR is a

library of functions—sequences of software code that

perform specific tasks—that makes it easy to write

multithreaded applications that can coordinate a number of

simultaneous activities [2]. It was designed to help

programmers take advantage of the power of multicore and

multiprocessor systems which is also ideal for robotics.

Decentralized software services (DSS): DSS provides the

runtime environment that allows services to exchange

messages regardless of where they are located on the

network. Since DSS allows software components to run in

isolation from one another, if an individual component of a

robot fails, it can be shut down and restarted—or even

replaced—without having to reboot the machine [2].

Microsoft Visual Programming Language (VPL): A

visual programming tool for creating and debugging robot

applications which utilizes web-based and windows-based

interfaces. The VPL (Fig. 2) allows for a LabView like

graphical modelling approach to create the entity behaviours

that belong to each entity i.e. sensors, actuators. The

developer uses the palette of objects and behaviours then

―drags and drops‖. The visual objects are connected together

and set the exposed properties correctly in order to program

a robot; the developer can create various distinct entity

behaviours.

Visual Simulation Environment (VSE): 3D simulation

environment (Fig. 3) which includes hardware acceleration.

The simulation environment is enabled by AGEIA PhysX

engine; a real world physics simulation engine that allows

near to real-world modelling and response of the robots will

take place in this virtual environment. Robot can be

initialized in a virtual world; move and physically respond

to the virtual environment as if it was deployed in a real

world.

Fig. 3. An example of 3D VSE in MSRS [12].

Fig. 2. VPL example in MSRS [13].

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

Existing robots and components: MSRS allows

straightforward access to multiple simulated robots such as

KUKA, LegoMindstorm, various sensors and actuators.

Examples of these sensors are the Laser Range Finder (Fig.

4), the Sonar Range Finder, the wheel motor drives,

articulated joints and GPS location devices.

A. MSRS Underwater Robot Simulation

A similar work was done to study underwater robot

simulation with ultimate goal of performing simulation of

land, air and sea robotic [9]. This project uses MSRS

features on integrating 3D robot models designed using

CAD (Computer Assisted Design) software. The robot

model in 3D design and the simulation result can be seen in

Fig. 5 and 6. This project highlights the process and

problems developing the underwater virtual simulation

using MSRS.

IV. INITIAL EXPERIMENTS

A simple 3D model to represent mobile robot model was

designed using CAD software, integrated into simulation

environment and then simulates the robot motion using

existing MSRS components. The conducted experiments

were as follows:

Designing 3D model: MSRS only supports a specific 3D

format i.e. COLLADA to be imported in the environment. A

simple 3D model of a box to represent a mobile robot model

was made using CAD software. The model was converted

into COLLADA format and then imported into the MSRS

environment.

Creating simulation environment: A manifest had to be

created before attaching any elements into the environment.

The elements will be added by writing program using the C#

(C Sharp) software language. Fig. 7 shows the example of

the program to create a skydome and light source in the

VSE. The result of integrating the mobile robot into VSE is

shown in Fig. 8.

Creating motion: The motion properties had to be inserted

in order to enable the robot movements. After editing the

properties, a controller was added for controlling the

simulation robot. Fig. 9 shows the virtual and actual

controller.

Fig. 8. Simple robot simulation.

//Add a SkyDome
SkyDomeEntity sky = new SkyDomeEntity
 (“skydome.dds”, “sky_diff.dds”);

SimulationEngine.GlobalInstancePort.Update(view) ;
//Light source
LightSourceEntity sun = new
 LightSourceEntity();
sun.State.Name = “Sun”
sun.Type = LightSourceEntityType.Directional;
sun.Color = new Vector4(0.8f,0.8f, 0.8f, 1);
sun.Direction = new Vector3(0.5f, -.75f,
 0.5f);
SimulationEngine.GlobalInstancePort.Insert(sun
);

Fig. 7. Adding the simulation environment code.

Fig. 6. Under water robot simulation in MSRS VSE [9].

Fig. 5. 3D model of submarine [9].

Fig. 4. Sensor specification and mobile robot simulation [10].

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

Fig. 9. Virtual and actual Xbox 360 robot controller [13]

V. DESIGNING VIRTUAL 3D MODEL AND

INTEGRATION IN MSRS

After the initial experiments, measurement i.e. heights,

wheel size, weight and etc. were taken from the actual

mobile robot before creating the 3D model. Since MSRS

only supported certain format, the modelling software

Solidworks was used. The mobile robots parts were created

in this software and then assembled to form a complete 3D

model. Fig. 10 shows the completed 3D mobile robot model

designed using Solidworks. The comparison between the

completed 3D virtual mobile robot and actual model is

shown in Fig. 11.

In order to import the completed 3D robot model into the

MSRS VSE there few steps to be followed, which are: a) 3D

robot model was designed using Solidworks, it has to be

saved into Colada format in the form of ―.dae‖ file; b) the

Colada format file will be converted into ".obj", a

Wavefront object simulation mesh; c) Using "obj2bos.exe"

converter that comes with MSRS, the ".obj" to ".bos" file

converter tool converts Object simulation mesh file into an

optimized binary file; d) write C# program to customize the

simulation environment as shown in Fig. 12 and 13.

Fig. 14 shows the final representation of 3D MFIBot

robot model simulated in MSRS VSE. Adding controller

and motion properties by configuring DSS; the simulated

robot can be controlled using Xbox 360 controller. A test

was performed using Xbox controller to drive the robot

forward. The robot falls after colliding with a wall; this is

shown in Fig. 15.

A. Encountered Problems

Comprehensive study was conducted before using

MSRS. It was assumed that there will be no major problems

in developing robot simulation using VSE.

The first problem encountered in the VSE simulation is

sinking wheel as shown in Fig. 16. The MSRS simulation

engine uses a right-handed coordinate system, which affects

the direction toward which the Z axis points. Therefore,

during the design, both Solidworks and VSE must use adopt

same coordinate system and the most bottom part of the

Fig. 15. Simulation result: Robot falls after colliding with the wall.

Fig. 14. Final representation of 3D mobile robot model in MSRS VSE.

Fig. 13. C# code snippet: Adding the MFIBot ―.bos‖ into VSE.

// specify a default mesh
State.Assets.Mesh = "Mfi-bot.bos";

private void PopulateWorld() {
 AddSky();
 AddGround();
 AddMfiBot();
 AddBox();
}

Fig. 12. C# code snippet: Adding the sky, ground,

MFIBot and a box into VSE.

Fig. 11. Comparison between virtual 3D and actual mobile robot model.

Fig. 10. Designing 3D mobile robot model using Solidworks.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

robot i.e. the wheel must be placed on the x, y plane where z

axis is equal to 0.

The second problem encountered in the VSE simulation

is missing texture and color as shown in Fig. 17. This can be

solved by editing the ―.obj‖ format file using Blender, cross

platform suite of tools for 3D creation to include colour and

texture information. Fig. 18 shows the edited 3D model in

Blender.

VI. CONCLUSION AND FUTURE WORKS

The initial experiment was successfully conducted. A

simple 3D box to represent the mobile robot was created and

integrated into MSRS VSE. Using VPL the movement of

the 3D mobile can be controlled. Then a more realistic

mobile robot model taken from the actual robot specification

was created and integrated into the simulation.

In the current development stage, the virtual robot

utilizes existing MSRS APIs and components and there are

no sensors attached to the robot. For future development the

virtual robot in the MSRS will be enhanced. The customized

manifest and controller objects to allow controlling via VPL

by the means of writing programs will be created. Apart

from the controller, sensors will be attached to the virtual

robot. This will be done by creating sensor objects. Once the

enhancement has been accomplished, the designed

simulated mobile robot can be programmed to simulate real

world activities and to be used for teaching robots.

The MSRS has great potential in becoming one of the

preferred tools for mobile robot simulation. It is packed with

lots of useful and easy to learn features. It has rapid

prototyping capabilities, varieties of actual robots model and

virtual sensors which can be quickly deployed for real world

simulation.

REFERENCES

[1] Beer RD, Chiel HJ, Drushel RF, ―Using autonomous robotics to teach
science and engineering,‖ Communication ACM 42(6), pp. 85-99,

1999.

[2] Bill Gates, ―A Robot In Every Home,‖ Scientific American, pp. 58-
65, December 16, 2006.

[3] Benjamin Balaguer, Stephen Balakirsky, Stefano Carpin, Mike Lewis

and Christopher Scrapper, ―USARSim: a validated simulator for
research in robotics and automation,‖ IEEE International Conference

on Robotics and Automation, 2007.

[4] B. Gerkey, R. T. Vaughan and A. Howard, ―The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems,‖ Proceedings

of the 11th International Conference on Advanced Robotics, 2003.

[5] N. Koenig and A. Howard, ―Design and Use Paradigms for Gazebo,
An Open-Source Multi-Robot Simulator,‖ IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Sendai, Japan,

2004.
[6] Michel, O, ―Webots: Professional Mobile Robot Simulation,‖

International Journal of Advanced Robotic Systems, 2004, vol. 1,

num. 1, pp 39-42.
[7] Bräunl, Thomas, Embedded Robotics: Mobile Robot Design and

Applications with Embedded Systems. Springer; 2008, ch. 13, pp. 171

172.
[8] Kyle Johns, Trevor Taylor, ―Professional Microsoft Robotics

Developer Studio,‖ Wrox, 2008.

[9] John Prevost, "Simulation of Underwater Robots using MS Robot
Studio©,‖ IEEE Xplore, 2008

[10] Haoxiang Lang, Ying Wang, de Silva, C.W., ―Mobile robot

localization and object pose estimation using optical encoder, vision
and laser sensors,‖ IEEE Xplore, 2008.

[11] W. T. Tsai, Qian Huang, Xin Sun, ―A Collabrative Service Oriented

Simulation Framework with Microsoft Robotics Studio, ― IEEE
Xplore, 2008.

[12] MSDN.com. (2010, June). Microsoft Robotics Blogs [Online].

Available:http://blogs.msdn.com/msroboticsstudio/default.aspx?p=4.
[13] Microsoft.com. (2010, June), Overview: Microsoft Robotics

Developer Studio 2008 (RDS) [Online]. Available:

http://msdn.microsoft.com/en-us/library/bb483024.aspx.

Fig. 16. Wheel sinking into the ground

Fig. 18. Re-editing 3D model using Blender to include colour and

texture information.

Fig. 17. Missing texture and colour information after inserting 3D

model in VSE.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

