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Abstract—Let t be a triangle in R2. We find the Longest
Edge (LE) of t, insert n−1 equally-space points in the LE and
connect them to the opposite vertex. This yields the generation
of n new sub-triangles whose parent is t. Now, continue this
process iteratively. Proficient algorithms for mesh refinement
using this method are known when n = 2, but less known
when n = 3 and completely unknown when n > 4.

We prove that the LE n-section of triangles for n > 4
of triangles produces a finite sequence of triangle meshes
with guaranteed convergence of diameters. We give upper and
lower bounds for the convergence speed in terms of diameter
reduction. Then we fill the gap in the analysis of the diameters
convergence for general Longest Edge based subdivision. In
addition, we give a numerical study for the case of n = 4, the
so-called LE quatersection, evidencing its utility in adaptive
mesh refinement.

Index Terms—Longest-edge, Triangle partition, n-section,
Mesh refinement, Triangulation.

I. INTRODUCTION

Since the apparition of Finite Element Method in the
60th, many mesh partitions methods became popular. Mesh
Refinement algorithms use such partition methods to refine
a given mesh. One wishes to construct a sequence of nested
conforming meshes which are adapted to a given criterion.
Nested sequences of triangles where each element in the
sequence is a child of parent triangle of same sequence are
of quite interest in many areas as Finite Element Multigrid
Methods, Image Multiresolutions etc., [1].

Although Delaunay triangulations maximize the minimum
angle of all the angles of the triangles in any triangulation,
some other competitive methods have emerged in the last
decade specially those with cheaper computational cost as
Longest Edge (LE) based subdivision. LE n-section based
algorithms are surprisingly cheap. They are linear in the
number of elements, as the only necessary calculations are:
(i) Longest Edges and (ii) insertion of n points in the LE
side, both of constant-time.

Before we discuss and analyze the general case of Longest
Edge n-section of triangles, we first give a short overview of
existing methods for LE bisection and LE trisection, n equal
two and three respectively.
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A. Longest Edge Bisection Partition

Possible the first method to repeatedly subdivide a tri-
angle mesh was the Longest Edge bisection of a triangle.
Rosenberg and Stenger showed the non-degeneracy property
for LE-bisection: αn ≥ α0

2 , [9] where αn is the minimum
interior angle in new triangles appeared at iteration n, and
α0 the minimum angle of initial given triangle.

For better understanding of LE based subdivision, other
authors also study the longest edge (diameter) of successive
triangle generation. Kearfott [5] proved a bound on the
behavior the length of the longest edge of any triangle (di-
ameter) obtained. Later Stynes [3] presented a better bound
for certain triangles. After that, Stynes [4] and Adler [2]
improved this bound for all triangles. From their studies
they also derived that the number of classes of similarity
of triangles generated is finite, which is a desirable property
of triangle partitions.

B. 4T-LE: Four-Triangles Longest-Edge Partition.

Further research on Longest-Edge bisection has been
carried out since the ninety. Many other variants of LE-
bisection have appeared in this period. For example, the Four-
Triangles Longest-Edge Partition, (4T-LE) bisects a triangle
into four subtriangles as follows: the original triangle is first
subdivided by its longest edge and then the two resulting
triangles are bisected by joining the new midpoint of the
longest edge to the midpoints of the remaining two edges
of the original triangle. The 4T-LE partition of a given
triangle t never produces an angle smaller than half the
minimum original angle and besides, it shows a remarkable
mesh quality improvement between certain limits, as recently
studied in [8]. In practice, Rivara refinement improves angles,
and this improvement has been studied in depth, see [8]
where sharper bounds for number of dissimilar triangles
arising from the 4T-LE are given.

C. 7T-LE: Seven-Triangles Longest-Edge Partition.

Superior quality improvement of the triangulation can
be achieved by the 7-Triangle Longest-Edge (7T-LE) par-
tition, [10]. This partition is constructed by positioning two
equally spaced points per edge and join them, using parallel
segments, to the edges, at the points closest to each vertex.
Then joining the two interior points of the longest edge of
the initial triangle to the base points of the opposite sub-
triangle in such a way that they do not intersect, and finally,
triangulating the interior quadrangle by the shortest diagonal.
Two of new triangles generated are similar to the new triangle
also generated by the 4T-LE, and the other two triangles are,
in general, better shaped. As a consequence, the area covered
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by better triangles is showed to be superior compared to the
4T-LE.

D. Longest Edge Trisection Partition

There is very little research so far on LE n-section meth-
ods other than bisection. Recently, a new class of triangle
partitions based on the Longest-Edge Trisection has been
presented by Plaza et al. [6]. It simply consists in inserting
three equal points in the Longest Edge and then connecting
them to the opposite vertex. Empirical evidence has been
given of the non-degeneracy of the meshes obtained by
iterative application of LE-trisection. In fact, if α0 is the
minimum interior angle of the initial triangle, and αn, the
minimum interior angle after n levels of LE-trisection, then
αn ≥ α0/6.7052025350, independently on the value of
n [6]. To complete the study of non-degeneracy for LE-
Trisection, it has been proved in [7] that for LE-trisection
αn ≥ α0

c where c = π/3

arctan(
√

3
11 )

. This result confirms
previous numerical research, [6].

(a) LE 2-section (b) LE 3-section

(b) LE 4-section

Fig. 1. Scheme for Longest Edge (LE) n-section of a triangle (n = 2, 3, 4)

In this paper we prove that the LE n-section of triangles
for n > 4 of triangles produces a finite sequence of triangle
meshes with guaranteed convergence of diameters. We give
upper and lower bounds for the convergence speed in terms
of diameter reduction. In addition, we explore in details the
so-called LE quatersection (n = 4) of triangles by studying
the triangles shapes emerging in that process.

The structure of this paper is as follows: Section II
and III introduces and proves the upper and lower bound
respectively. Section III gives a numerical study where shape
quality is studied for the case of n = 4 of LE quatersection,
evidencing its utility in adaptive mesh refinement. We close
with some final conclusions in Section V.

II. UPPER BOUND OF DIAMETERS.

We prove following theorem:

Theorem 1. Let dk be the diameter in the k iterative
application of Longest-Edge n-section (n > 4) to a given
arbitrary triangle △ABC, then:

d2k 6
(√

n2 − n+ 1

n

)k

d0

where d0 is the diameter of initial triangle and k > 0.

Before, we give some previous lemmas that are used in
the proof:

Lemma 1. (Theorem of Stewart.) Let △ABC be an arbi-
trary triangle and S be a point in BC. Then:

|AS|2|BC| = |AB|2|SC|+ |AC|2|BS| − |BS||SC||BC|.
(1)

Lemma 2. Let △ABC be an arbitrary triangle where
|AB| 6 |AC| 6 |BC|. Then:

1) |AS| 6 |AC| for each S ∈ BC, see Figure 2 (a).
2) Let X and Y be points in segment BC such that

segments BX and CY are equal and have empty
intersection, then |AX| 6 |AY |, see Figure 3 (b).

R

A

B C

A

B CX YM

(a)

(b)

S

Fig. 2. (a) |AS| 6 |AC| for each S ∈ BC. (b) |AX| 6 |AY |

B CX
n-1

X
1

X
2

A

. . .
X

n-2

Fig. 3. |BX1| = |X1X2| = ... = |Xn−1C| 6 |AXn−1|

Note that part two of Lemma 2 is straightforward as a
consequence of part one, see Figure 2 .

If for an arbitrary triangle △ABC we have that |AB| 6
|AC| 6 |BC| then we say that length of shortest edge is
|AB|, length of medium edge is |AC| and length of longest
edge is |BC|.

Lemma 3. Let n > 4 and △ABC such that |AB| 6 |AC| 6
|BC|. Let X1, X2, ... Xn−1 points of BC such that |BX1| =
|X1X2| = ... = |Xn−1C| = 1

n |BC|. Then the length of
medium size of triangle △BAX1, △X1AX2,..., △Xn−1AC
is less or equal than |AXn−1|.

Proof: From Lemma 2 we have that |AXi| 6 |AXn−1| 6
|AC| for each i ∈ {1, 2, ...n − 1}. Thus, it is clear that
∠AXn−2Xn−1 > π

2 , and so |BX1| = |X1X2| = ... =
|Xn−1C| 6 |AXn−1|, see Figure 3.
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Suposse that |AB| is the length of medium edge of
△BAX1, then the length of its longest edge is, either |AX1|
or |BX1|. Note that last two segments are less or equal than
|AXn−1|, as previously proven.

Lemma 4. Let a triangle △ABC such that |AB| 6 |AC| 6
|BC| and P ∈ BC such that BP

PC
= n− 1 for n > 4. Then:

|AP | 6
√
n2 − n+ 1

n
|AC|. (2)

Proof: Let |AB| = c, |BC| = a, |AC| = b. Then |BP | =
n−1
n a and |CP | = 1

na. By Lemma 1 we have:

|AP |2a = c2 · 1
n
a+ b2 · n− 1

n
a− (

n− 1

n2
)a3,

from where

|AP |2 =
c2 + (n− 1)b2

n
− (

n− 1

n2
)a2.

Note that c 6 b 6 a, and thus s2 6 b2(n−1)+b2

n − (n−1
n2 )b2 =

(n
2−n+1
n2 )b2, from where we have inequality which proves

the result of the Lemma.

At this point, we follow with the proof of main result,
Theorem 1.
Proof of Theorem 1: Let us consider the sequence {Ik}∞k=1

such that Ik is the longest of the two medium edges of each
triangle obtained after iteration k of LE n-section at (n > 4).
Then:

dk+1 6 Ik

Note that at iteration k, each longest edge previously
obtained at iteration (k + 1) is subdivided in n equal parts.
Each of these parts is the shortest edge of at least one of
the triangle obtained at iteration (k + 1).

Using Lemmas 3 and 4 we have that: Ik 6
√
n2−n+1

n dk.
It is clear that

√
n2−n+1

n < 1, and so dk+2 6
√
n2−n+1

n dk.

Thus, we follow that d2k 6
(√

n2−n+1
n

)k
d0.

III. LOWER BOUND FOR DIAMETERS.

We next provide a lower bound for the LE n-section of
triangles.

Theorem 2. Let dk be the diameter in the k iterative
application (k > 1) of Longest-Edge n-section (n > 4) to
a given arbitrary triangle with edges a, b and c such that
c 6 b 6 a. Then, there exists constants p, q, r, s, t and u
only dependent on a, b, c and n, such that it holds:

1) For n = 4, d2k > ( 14 )
k
(pk2 + qk + r) > 0.

2) For n > 5, d2k > s 1
nk + t

(
n2−2n+n

3
2
√
n−4

2n2

)k

+

u

(
n2−2n−n

3
2
√
n−4

2n2

)k

.

Proof:
Let n > 4 and △ABC be an arbitrary triangle with |AB| 6
|AC| 6 |BC|, |AB| = c, |BC| = a and |AC| = b. Let
us consider the triangle sequence {∆k}∞k=0 such that ∆0 =

△A0B0C0, A0 = A, B0 = B, C0 = C, and for each k > 0
let ∆k+1 = △Ak+1Bk+1Ck+1 where Ak+1 ∈ BkCk such
that |Ak+1Ck| = 1

n |BkCk|, Bk+1 = Ck y Ck+1 = Ak. It can
be noted that for each k > 1, |AkBk| 6 |AkCk| 6 |BkCk|;
from where we have that for each k > 1, ∆k is one of the n
triangles obtained by applying the LE n-section to triangle
∆k−1.

Let now consider the sequence {ak}∞k=0 where ak =
|BkCk|. Using Lemma 1, following recurrence equation can
be obtained:

a2k+3 −
n− 1

n
a2k+2 +

n− 1

n2
a2k+1 −

1

n3
a2k = 0,

where a0 = nc, a1 = a y a2 = b. Stating yk = a2k, we have:

yk+3 −
n− 1

n
yk+2 +

n− 1

n2
yk+1 −

1

n3
yk = 0,

where a0 = n2c2, a1 = a2 and a2 = b2. It can be noted that
from the construction of sequence yk it is deduced that each
terms of the sequence is positive. The characteristic equation
of such recurrence equation is as follows:

λ3 − n− 1

n
λ2 +

n− 1

n2
λ− 1

n3
= 0.

At this point, two separated situations can be given: (i)
n = 4, where a square root of multiplicity three appears,
and (ii) n > 5 where three real roots appears.

(i) Case n = 4. The solution of the characteristic equation
is λ = 1

4 , of multiplicity 3, and then:

yk =

(
1

4

)k

(pk2 + qk + r),

where p, q y r are real constants only dependent on a, b y c.
Such constants are solutions of an equation system obtained
from the initial conditions, omitted here for brevity.

(ii) Case n > 5. The characteristic equation has three

real roots: λ1 = 1
n , λ2 = n2−2n+n

3
2
√
n−4

2n2 and λ3 =
n2−2n−n

3
2
√
n−4

2n2 . Thus:

yk =

(
1

n

)k

s+

(
n2 − 2n+ n

3
2

√
n− 4

2n2

)k

t+

+

(
n2 − 2n− n

3
2

√
n− 4

2n2

)k

u.

where s, t and u are real constants only dependent on a, b,
c and n. Such constants are solutions of an equation system
obtained from the initial conditions, omitted here for brevity.

It should be noted that dk > ak, and so d2k > yk =

( 1n )
k
s+ (n

2−2n+n
3
2
√
n−4

2n2 )
k

t+ (n
2−2n−n

3
2
√
n−4

2n2 )
k

u.

Among the LE n-section methods, the LE 4-section or LE
quatersection this point forwards, has not been explored yet
as far as we know. We are dealing with LE quatersection
in the rest of the paper. In Figure 4 it is graphed the
bound diameters evolution when repeated LE quatersection
is applied to three initial triangles with initial diameter equals
1. The coordinates (x, y) of the targeted triangles are:

∆1 = (0, 0) (0.5,
√
3/2) (1, 0)

∆2 = (0, 0) (0.1, 0.1) (1, 0)
∆3 = (0, 0) (0.4, 0.01) (1, 0)
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Fig. 4. Upper and Lower bound for several triangles.

IV. A MAPPING DIAGRAM TO REPRESENT TRIANGLE
SHAPES

A mapping diagram is constructed as follows, see [11]
to visually represent triangle shapes in LE quatersection
refinements: (1) for a given triangle or subtriangle the longest
edge is scaled to have unit length. This forms the base
of the diagram, (2) it follows that the set of all triangles
is bounded by this horizontal segment (longest edge) and
by two bounding exterior circular arcs of unit radius. The
diagram is then defined by the set:

{(x, y) : x2 + y2 > 1} ∩ {(x, y) : (x− 1)2 + y2 > 1} ∩ ...

{(x, y) : x > 0, y > 0 }

In this manner, a point within the diagram univocally
represents a triangle, whose apex is this point itself and the
other two vertices are (0, 0) and (1, 0) respectively. This lead
us to an easy and simple way to uniformly represent triangle
shapes. For instance, a degenerated triangle in which its three
vertices are collinear is represented by and apex over the
base, the segment defined by coordinates (0, 0) and (1, 0),
of the diagram. The equilateral triangle corresponds to the
apex at ( 12 ,

√
3
2 ). As the vertex of a triangle moves from

this point along either boundary arc, the maximum angle
increases from π

3 to approach a right angle at the degenerate
‘needle triangle’ limit near (0, 0) or (1, 0).

In order to show the behaviour of LE quatersection for
some refinement iterations, we employ the so described
mapping diagram where shaded values within the diagram
represents the quotient τ0

τ2
, being τ0 the minimum initial angle

and τ2 the minimum angle after two levels of refinement,
see Figure 5. Approximately five thousand of triangles are
targeted for refinement, covering uniformly the interior area
of the diagram. It can be noted in the diagram two interesting
areas around coordinates x = 0.4 and x = 0.6. These
focused areas are triangles with greatest minimum angles,
whereas upper zones correspond to lower values.

The mapping diagram can be also used to analyze the
shapes of subsequent triangles generated in iterative LE
quatersection. For example, Figures 6 (a), (b) (c) and (d)
show separate cases for iterative refinement of given initial
triangles, corresponding respectively to triangles ∆1, ∆2,

Nivel=10

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0

2

4

6

8

10

12

Fig. 5. Mapping diagram for two levels of quatersection. Shaded colors
are τ0

τ2
, being τ the minimum angle.

TABLE I
MINIMUM ANGLES RATIOS α0/αn FOR THREE TRIANGLE CASES AND

THREE REFINEMENT LEVELS

α0/α1 α0/α2 α0/α3

∆1 11.5191 22.3865 37.1927

∆2 5.0247 8.1670 12.0620

∆3 1.8685 2.4038 3.0064

∆3 and ∆4. It should be noted as rapidly new subdivided
triangles move down close to the limit base segment of
the diagram, evidencing so the degeneracy trend of LE
quatersection.

Finally, reported values of α0/αn, n = 1, 2, 3 for same
triangles cases are reported in Table I. Note that LE quater-
section generally deteriorates minimum angles. Note also
that shape quality is clearly dependent of the initial triangle
considered for refinement. Thus, the regular triangle, as
expected, poses the worst case α0/α3 = 37.1927, which
is in agreement with the behaviour of LE bisection and LE
trisection. In the case of initial triangles of poor quality, for
example triangle ∆3, LE quatersection leads to reasonable
output values for the minimum angles and then an adaptive
mesh refinement algorithm that uses this method can be a
valuable option for special narrowed or skinny triangle like
this type, as those appearing in meshes from Fluid Dynamic,
Electromagnetism etc.

V. CONCLUSIONS

Nested sequences of triangles where each element in the
sequence is a child of parent triangle has shown to be critical
in Multigrid Methods or Finite Element. In this paper we
generalized a class of triangle mesh refinement based on the
Longest Edge and introduced the so-called Longest Edge n-
section methods. Proficient algorithms for mesh refinement
using this method are known when n = 2, but less known
when n = 3 and completely unknown when n > 4. LE n-
section based algorithms are surprisingly cheap. They are
linear in the number of elements, as the only necessary
calculations are: (i) Longest Edges and (ii) insertion of n
points in LE sides, which is of constant-time.

In this paper we proved upper and lower bounds for the
sequence of diameters generated by iterative application of
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(a) Case of the regular initial triangle, which marks the worst case for minimum
angles. Shape of all the new triangles are worse than the regular.
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(b) Superior triangles in terms of shape quality are detected above the red apex.
Some others with inferior quality appear below the red apex.
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(c) A very bad initial triangle leading to some new improved subtriangles.

Fig. 6. Triangle generation resulting after 3 levels of LE quatersection
applied to an initial triangle (marked in red ). Studied cases for initial trian-
gles: (a) ∆1 = (0, 0)(0.5,

√
3/2)(1, 0), (b) ∆2 = (0, 0)(0.1, 0.1)(1, 0)

and (c) ∆3 = (0, 0)(0.4, 0.01)(1, 0).

LE n-section partition. We gave upper and lower bounds for
the convergence speed in terms of diameter reduction. In
addition, we have explored in details the LE quatersection
(n = 4) of triangles by studying the triangles shapes that
emerge in that process. We then evidence its utility in
adaptive mesh refinement specially in meshes with narrowed
or skinny triangles as those appearing in Fluid Dynamic and
Electromagnetism.
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