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Abstract- Defect prediction models are significantly beneficial 

for software systems, where testing experts need to focus their 
attention and resources on problematic areas in the software 
under development. In this paper we find the relation between 
object oriented metrics and fault proneness using logistic 
regression method. The results are analyzed using open source 
software.  The performance of the predicted models is evaluated 
using Receiver Operating Characteristic (ROC) analysis. The 
results show that Area under Curve (calculated by ROC analysis) 
of the predicted model is 0.829. 
 
Index Terms— Object oriented Metrics, Software quality, 
Empirical validation, Fault prediction, Receiver Operating 
Characteristics analysis 

 

I. INTRODUCTION 

 
     Application of software quality models early in the 
software development life cycle contributes to efficient defect 
removal and results in delivering more reliable software 
products. Empirical studies for predicting defects have been 
carried out in past and have stressed on the need to carry out 
more such studies in order to provide strong evidence in this 
important area.  
   Several metrics have been proposed in the literature to 
capture the OO design and code, constructs for example, 
(Aggarwal et al. [1]; Briand et al., [2, 3]; Bieman and Kang 
[4]; Cartwright and Shepperd [5]; Chidamber and Kemerer 
[6]; Harrison et al. [7]; Henderson-sellers [8]; Hitz and 
Montazeri [9]; Lake and Cook [10]; Li and Henry [11]; Lee et 
al. [12] Lorenz and Kidd [13]; Tegarden et al [14]). 
   These metrics provide ways to assess the quality of software 
and their use in early phases of software development can help 
software companies in evaluating large software development 
quickly and at a reasonable cost [1]. 
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There have been empirical studies evaluating the impact of 
OO metrics on faulty classes such as (Aggarwal et al. [15], 
Singh et al. [16-18]; Basili et al. [19]; Binkley and Schach 
[20]; Briand et al [21]; Cartwright and Shepperd [5]; El Emam 
et al. [22]; Gyimothy et al. [23]; Zhou et al. [24]). 

The work described in this paper focuses on the use of 
Object Oriented (OO) metrics in predicting defect prone 
classes. Our results are based on open source software Ant 1.7 
developed using java language [25]. Although the open source 
software has achieved an acceptable level of quality, but there 
is more to be done in order to outperform proprietary software 
[26]. Hence, the defect prediction models can help in 
improving the quality and reducing faulty classes in the open 
source software. The validation of the methods is carried out 
using Receiver Operating Characteristic (ROC) analysis. 
Hence, the study is divided into the following parts: 

1. Descriptive statistics and outlier analysis is 
performed to extract useful metrics and remove 
irrelevant data points. 

2. Multivariate logistic regression is used for model 
prediction and validation. 

3. Defect prediction model is evaluated using 
performance measures including ROC analysis. 

The model constructed to predict faulty classes may help in 
focusing testing and inspection resources on the defect prone 
parts of the design and code in a cost effective manner. 
    The paper is organized as follows: Section 2 summarizes 
the OO metrics studied. Section 3 describes sources from 
which data is collected. The results of the study are given in 
section 4 and the model is evaluated in section 5. Section 6 
presents threats to validity of the models and the conclusions 
of the research are presented in section 7.  
 

II.  METRICS USED 

 
The binary dependent variable in our study is fault proneness. 
Fault proneness is defined as the probability of fault detection 
in a class [17]. We use logistic regression, which is based on 
predicting probabilities. For this study, we predict fault prone 
classes from object oriented metrics. The metrics are collected 
by using a tool for calculating Chidamber and Kemerer java 
metrics (ckjm). The tool is available at 
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html.  The 
metrics are given in table I [6, 7, 27]. 
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TABLE I  

METRICS USED IN THE STUDY

  
Metric Definition 
Coupling between objects 
(CBO) 

CBO for a class is a count of the number of other classes to which it is 
coupled and vice versa. 

Lack of cohesion 
(LCOM) 

Measures the dissimilarity of methods in a class by looking at the instance 
variable or attributes used by methods.  

Number of children 
(NOC) 

The number of immediate subclasses of a class in a hierarchy. 

Depth of inheritance 
(DIT) 

The depth of a class within the inheritance hierarchy is the maximum 
number of steps from the class node to the root of the tree and is measured 
by the number of ancestor classes. 

Weighted methods per 
class (WMC) 

A count of sum of complexities of all methods in a class.  

Response for a class 
(RFC) 

A set of methods that can be potentially executed in response to a message 
received by an object of that class.  

Number of public 
methods (NPM) 

The count of number of public methods in a class. 

Afferent couplings (Ca) It counts how many other classes use a given class. 
Lack of cohesion in 
methods (LCOM3). 
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Data Access Metric 
(DAM)  

It is defined as number of private methods divided by total number of 
methods. 

Measure of Aggregation 
(MOA) 

It counts abstract data types in a class. 

Measure of Functional 
Abstraction (MFA) 

It is defined as number of inherited methods divided by total number of 
methods accessible by its member functions. 

Cohesion Among 
Methods of Class (CAM) 

It is based upon parameters list of a method. 

Inheritance Coupling (IC) It is based upon inheritance based coupling. 
Coupling Between 
Methods (CBM) 

It counts the newly added functions with which inherited based methods are 
coupled. 

Average Method 
Complexity (AMC) 

It counts average size of method in a class. 

Cyclomatic Complexity 
(CC) 

CC= e-n+P, where e= number of edges in a flow graph, n=number of nodes 
in a flow graph, p= connected components 

Lines of code (LOC) The count of lines in the text of the source code excluding comment lines 
 

III. EMPIRICAL DATA COLLECTION 

 
In this study Apache Ant 1.7 open source software is used [25] 
for finding relationship between OO metrics and fault 
proneness. ANT 1.7 is a command-line tool that allows to 
build, compile, test and run Java applications. Ant 1.7 is 
developed using the Java language consisting of 745 classes. 
The development period of this version was December 2006 to 
September 2009. The details of the data set are summarized in 
table II. 

 
 

TABLE II 

 DATA USED IN THE STUDY 

System  Apache Ant 

Language Java 

Total Classes 745 

% faulty classes 22.28 

Total faults 338 
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IV. ANALYSIS RESULTS 

 
In this section, we described the analyses performed to find 
the relationship between OO metrics and fault proneness of 
the classes. We employed multivariate logistic regression 
analysis. The multivariate analysis is used to find the 
combined effect of OO metrics on fault proneness. The models 
predicted were applied to Apache Ant 1.7 data set consisting 
of 745 classes. Descriptive statistics and outlier analysis was 
performed to find the irrelevant data. The following 
measures are used to evaluate the performance of each 
predicted fault proneness model in the above sub sections 
[17]: 

 Sensitivity and Specificity, Completeness, Precision, 
Receiver Operating Characteristic (ROC) analysis 
[28]. 

  In order to predict the accuracy of the model it 
should be applied to different data sets. We therefore 
performed k-cross validation of models [29]. The 
data set is randomly divided into k subsets. Each 
time one of the k subsets is used as the test set and 
the other k-1 subsets are used to form a training set. 
Therefore, we get the fault proneness for all the k 
classes. 

 
A. Descriptive statistics 

 To perform research analysis, the data should be 
preprocessed by removing irrelevant and unnecessary 
attributes that have less than six data points and eliminating 
outliers from the data set. Thus, we obtained descriptive 
statistics and performed outlier analysis on the data set. The 
descriptive statistics of the data set are shown in tablle III. 

 
B. Research Methodology 

 
Logistic Regression (LR) is used to predict the dependent variable 
(fault proneness) from a set of independent variables (OO 
metrics) to determine the percent of variance in the dependent 
variable explained by the independent variable (a detailed 
description is given by [30]. LR is of two types [17]: a) 
Univariate LR b) Multivariate LR.  
 

C. Multivariate LR Results 

In this section, we summarize the results obtained from 
multivariate fault prediction model using LR method. The 
multivariate analysis is used to find the combined effect of OO 
metrics (explained above) on fault proneness. We attempted to 
use the backward elimination method. However, the results of 
the model obtained were poorer (i.e. the values of R2 statistic 
were low) than the model obtained from the forward stepwise 
procedure. We therefore used the forward stepwise procedure 
in this study. The conditional number is below 30 for the 

model predicted. This implies that the multicollinearity of the 
predicted model is tolerable. Table IV provide the coefficient 
(B), standard error (SE), statistical significance (sig), odds 
ratio (exp(B)) for OO metrics included in the model. Table IV 
shows that two metrics, RFC and CC, are included in the 
predicted model. The results of model accuracy are 
summarized in table V. The AUC is 0.834, hence the accuracy 
of the model predicted is very high. 

 
TABLE III 

 MODEL STATISTICS 

Metrics  Min. Max. Mean 
Std. 
Deviation 

WMC 0 120 11.07114 11.97596 

DIT 1 7 2.522148 1.398869 

NOC 0 102 0.731544 4.800357 

CBO 0 499 11.04698 26.34315 

RFC 0 288 34.36242 36.02497 

LCOM 0 6692 89.14765 349.9376 

CA 0 498 5.655034 25.81422 

CE 0 37 5.746309 5.653176 

NPM 0 103 8.365101 9.331319 

LCOM3 0 2 1.013342 0.619015 

LOC 0 4541 280.0711 411.8721 

DAM 0 1 0.644855 0.438138 

MOA 0 11 0.726174 1.426581 

MFA 0 1 0.509968 0.398696 

CAM 0 1 0.474685 0.259931 

IC 0 5 0.720805 0.938948 

CBM 0 19 1.312752 2.332602 

AMC 0 2052 23.64087 76.98608 

CC 0 53 4.669799 6.276853 
 

TABLE IV  

MODEL STATISTICS 

Variable    B     S.E.     Sig. Exp(B) 
RFC 0.032 0.004 0.000 1.032 
CC 0.075 0.022 0.001 1.077 
Constant -2.926 0.188 0.000 0.054 

 

 TABLE V  

RESULTS OF MODEL PREDICTED 

Measures  Results 
Cutoff  
Sensitivity 
Specificity 
Precision 
AUC              
 SE 

0.17 
75.90 
75.50 
75.06 
0.834 
0.018 
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V. MODEL EVALUATION USING ROC ANALYSIS 

 
In this section, we present the results of model evaluation.  
 

D.  Model Evaluation 

The accuracy of the models predicted is somewhat optimistic 
since the models are applied on same data set from which they 
are derived. To predict accuracy of the model it should be 
applied on different data sets thus we performed 10-cross 
validation of the models. For the 10-cross validation, the 
classes were randomly divided into 10 parts of approximately 
equal data points. We summarized the results of cross 
validation of predicted models via the LR approach in Table 
VI. Table VI shows that AUC calculated by ROC analysis is 
very high 0.829. Thus, the accuracy of model obtained from 
validation data is similar to the accuracy of model obtained 
from training data. The values of sensitivity, specificity and 
precision are also high. The researchers and software 
practitioners can use the model predicted in early phase of 
software development. This will reduce testing effort and 
resources. 
 

TABLE VI  

RESULTS OF 10-CROSS VALIDATION OF MODEL 

Measures  Results 
Cutoff  
Sensitivity 
Specificity 
Precision 
AUC              
 SE 

0.18 
75.30 
75.50 
75.04 
0.829 
0.018 

 

The ROC curve for the model given in table VI is shown in 
fig. 1. 
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Fig. 1: ROC curve of LR Model 

VI. THREATS TO VALIDITY 

 
   The study has many limitations that are common with most 
of the empirical studies in literature. However, it is necessary 
to repeat them here.  
   The usefulness of OO metrics for predicting fault proneness 
models also depends on the programming language (e.g. C++, 
Java) being used. Thus, similar studies with different data sets 
are required to be carried out in order to establish the 
acceptability of the model. 
  Our conclusions are pertinent to only dependent variable 
fault proneness, as it seems to be most popular dependent 
variable in empirical studies. We do not claim about the 
validity of the chosen OO metrics in this study when the 
dependent variable changes like maintainability or effort [17]. 
 

VII. CONCLUSION 

 
    The goal of this work is to find the effect of OO metrics on 
fault proneness. We also empirically analyze the performance 
of logistic regression method in order to predict faulty classes.  
    Based on the results obtained from open source software 
Apache Ant 1.7 data set we analyzed the performance of 
predicted defect model using the ROC analysis. We analyzed 
the OO metrics including metrics given by Chidamber and 
Kemerer and McCabe. Our main results are summarized as 
follows: 
    Two metrics RFC and CC were included in the model. The 
model predicted has higher accuracy with AUC 0.829.  Thus, 
the model predicted shows that the model predicts faulty 
classes of open source software with good accuracy. 
    This study confirms that construction of model using 
logistic regression method will be effective, adaptable, and 
useful in predicting fault prone classes.  
    We plan to replicate our study to predict models based on 
machine learning algorithms such as support vector machines 
and genetic algorithms. We may carry out cost benefit analysis 
of models that will help to determine whether a given fault 
proneness model would be economically viable. 
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