
A Defect Prediction Model for Open Source Software

Ruchika Malhotra

Abstract- Defect prediction models are significantly beneficial

for software systems, where testing experts need to focus their
attention and resources on problematic areas in the software
under development. In this paper we find the relation between
object oriented metrics and fault proneness using logistic
regression method. The results are analyzed using open source
software. The performance of the predicted models is evaluated
using Receiver Operating Characteristic (ROC) analysis. The
results show that Area under Curve (calculated by ROC analysis)
of the predicted model is 0.829.

Index Terms— Object oriented Metrics, Software quality,
Empirical validation, Fault prediction, Receiver Operating
Characteristics analysis

I. INTRODUCTION

 Application of software quality models early in the
software development life cycle contributes to efficient defect
removal and results in delivering more reliable software
products. Empirical studies for predicting defects have been
carried out in past and have stressed on the need to carry out
more such studies in order to provide strong evidence in this
important area.
 Several metrics have been proposed in the literature to
capture the OO design and code, constructs for example,
(Aggarwal et al. [1]; Briand et al., [2, 3]; Bieman and Kang
[4]; Cartwright and Shepperd [5]; Chidamber and Kemerer
[6]; Harrison et al. [7]; Henderson-sellers [8]; Hitz and
Montazeri [9]; Lake and Cook [10]; Li and Henry [11]; Lee et
al. [12] Lorenz and Kidd [13]; Tegarden et al [14]).
 These metrics provide ways to assess the quality of software
and their use in early phases of software development can help
software companies in evaluating large software development
quickly and at a reasonable cost [1].

Manuscript received March 22, 2011.

Dr. Ruchika Malhotra (Corresponding Author phone: 91-9910290445)

is with Department of Software Engineering, Delhi Technological
University, Bawana Road, Delhi 110042, India, (email:

ruchikamalhotra2004@yahoo.com)

There have been empirical studies evaluating the impact of
OO metrics on faulty classes such as (Aggarwal et al. [15],
Singh et al. [16-18]; Basili et al. [19]; Binkley and Schach
[20]; Briand et al [21]; Cartwright and Shepperd [5]; El Emam
et al. [22]; Gyimothy et al. [23]; Zhou et al. [24]).

The work described in this paper focuses on the use of
Object Oriented (OO) metrics in predicting defect prone
classes. Our results are based on open source software Ant 1.7
developed using java language [25]. Although the open source
software has achieved an acceptable level of quality, but there
is more to be done in order to outperform proprietary software
[26]. Hence, the defect prediction models can help in
improving the quality and reducing faulty classes in the open
source software. The validation of the methods is carried out
using Receiver Operating Characteristic (ROC) analysis.
Hence, the study is divided into the following parts:

1. Descriptive statistics and outlier analysis is
performed to extract useful metrics and remove
irrelevant data points.

2. Multivariate logistic regression is used for model
prediction and validation.

3. Defect prediction model is evaluated using
performance measures including ROC analysis.

The model constructed to predict faulty classes may help in
focusing testing and inspection resources on the defect prone
parts of the design and code in a cost effective manner.
 The paper is organized as follows: Section 2 summarizes
the OO metrics studied. Section 3 describes sources from
which data is collected. The results of the study are given in
section 4 and the model is evaluated in section 5. Section 6
presents threats to validity of the models and the conclusions
of the research are presented in section 7.

II. METRICS USED

The binary dependent variable in our study is fault proneness.
Fault proneness is defined as the probability of fault detection
in a class [17]. We use logistic regression, which is based on
predicting probabilities. For this study, we predict fault prone
classes from object oriented metrics. The metrics are collected
by using a tool for calculating Chidamber and Kemerer java
metrics (ckjm). The tool is available at
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html. The
metrics are given in table I [6, 7, 27].

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

TABLE I

METRICS USED IN THE STUDY

Metric Definition
Coupling between objects
(CBO)

CBO for a class is a count of the number of other classes to which it is
coupled and vice versa.

Lack of cohesion
(LCOM)

Measures the dissimilarity of methods in a class by looking at the instance
variable or attributes used by methods.

Number of children
(NOC)

The number of immediate subclasses of a class in a hierarchy.

Depth of inheritance
(DIT)

The depth of a class within the inheritance hierarchy is the maximum
number of steps from the class node to the root of the tree and is measured
by the number of ancestor classes.

Weighted methods per
class (WMC)

A count of sum of complexities of all methods in a class.

Response for a class
(RFC)

A set of methods that can be potentially executed in response to a message
received by an object of that class.

Number of public
methods (NPM)

The count of number of public methods in a class.

Afferent couplings (Ca) It counts how many other classes use a given class.
Lack of cohesion in
methods (LCOM3).

m

mD
N

LCOM

n

i
i









1

)(
1

1 1



Data Access Metric
(DAM)

It is defined as number of private methods divided by total number of
methods.

Measure of Aggregation
(MOA)

It counts abstract data types in a class.

Measure of Functional
Abstraction (MFA)

It is defined as number of inherited methods divided by total number of
methods accessible by its member functions.

Cohesion Among
Methods of Class (CAM)

It is based upon parameters list of a method.

Inheritance Coupling (IC) It is based upon inheritance based coupling.
Coupling Between
Methods (CBM)

It counts the newly added functions with which inherited based methods are
coupled.

Average Method
Complexity (AMC)

It counts average size of method in a class.

Cyclomatic Complexity
(CC)

CC= e-n+P, where e= number of edges in a flow graph, n=number of nodes
in a flow graph, p= connected components

Lines of code (LOC) The count of lines in the text of the source code excluding comment lines

III. EMPIRICAL DATA COLLECTION

In this study Apache Ant 1.7 open source software is used [25]
for finding relationship between OO metrics and fault
proneness. ANT 1.7 is a command-line tool that allows to
build, compile, test and run Java applications. Ant 1.7 is
developed using the Java language consisting of 745 classes.
The development period of this version was December 2006 to
September 2009. The details of the data set are summarized in
table II.

TABLE II

 DATA USED IN THE STUDY

System Apache Ant

Language Java

Total Classes 745

% faulty classes 22.28

Total faults 338

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

IV. ANALYSIS RESULTS

In this section, we described the analyses performed to find
the relationship between OO metrics and fault proneness of
the classes. We employed multivariate logistic regression
analysis. The multivariate analysis is used to find the
combined effect of OO metrics on fault proneness. The models
predicted were applied to Apache Ant 1.7 data set consisting
of 745 classes. Descriptive statistics and outlier analysis was
performed to find the irrelevant data. The following
measures are used to evaluate the performance of each
predicted fault proneness model in the above sub sections
[17]:

 Sensitivity and Specificity, Completeness, Precision,
Receiver Operating Characteristic (ROC) analysis
[28].

 In order to predict the accuracy of the model it
should be applied to different data sets. We therefore
performed k-cross validation of models [29]. The
data set is randomly divided into k subsets. Each
time one of the k subsets is used as the test set and
the other k-1 subsets are used to form a training set.
Therefore, we get the fault proneness for all the k
classes.

A. Descriptive statistics

 To perform research analysis, the data should be
preprocessed by removing irrelevant and unnecessary
attributes that have less than six data points and eliminating
outliers from the data set. Thus, we obtained descriptive
statistics and performed outlier analysis on the data set. The
descriptive statistics of the data set are shown in tablle III.

B. Research Methodology

Logistic Regression (LR) is used to predict the dependent variable
(fault proneness) from a set of independent variables (OO
metrics) to determine the percent of variance in the dependent
variable explained by the independent variable (a detailed
description is given by [30]. LR is of two types [17]: a)
Univariate LR b) Multivariate LR.

C. Multivariate LR Results

In this section, we summarize the results obtained from
multivariate fault prediction model using LR method. The
multivariate analysis is used to find the combined effect of OO
metrics (explained above) on fault proneness. We attempted to
use the backward elimination method. However, the results of
the model obtained were poorer (i.e. the values of R2 statistic
were low) than the model obtained from the forward stepwise
procedure. We therefore used the forward stepwise procedure
in this study. The conditional number is below 30 for the

model predicted. This implies that the multicollinearity of the
predicted model is tolerable. Table IV provide the coefficient
(B), standard error (SE), statistical significance (sig), odds
ratio (exp(B)) for OO metrics included in the model. Table IV
shows that two metrics, RFC and CC, are included in the
predicted model. The results of model accuracy are
summarized in table V. The AUC is 0.834, hence the accuracy
of the model predicted is very high.

TABLE III

 MODEL STATISTICS

Metrics Min. Max. Mean
Std.
Deviation

WMC 0 120 11.07114 11.97596

DIT 1 7 2.522148 1.398869

NOC 0 102 0.731544 4.800357

CBO 0 499 11.04698 26.34315

RFC 0 288 34.36242 36.02497

LCOM 0 6692 89.14765 349.9376

CA 0 498 5.655034 25.81422

CE 0 37 5.746309 5.653176

NPM 0 103 8.365101 9.331319

LCOM3 0 2 1.013342 0.619015

LOC 0 4541 280.0711 411.8721

DAM 0 1 0.644855 0.438138

MOA 0 11 0.726174 1.426581

MFA 0 1 0.509968 0.398696

CAM 0 1 0.474685 0.259931

IC 0 5 0.720805 0.938948

CBM 0 19 1.312752 2.332602

AMC 0 2052 23.64087 76.98608

CC 0 53 4.669799 6.276853

TABLE IV

MODEL STATISTICS

Variable B S.E. Sig. Exp(B)
RFC 0.032 0.004 0.000 1.032
CC 0.075 0.022 0.001 1.077
Constant -2.926 0.188 0.000 0.054

 TABLE V

RESULTS OF MODEL PREDICTED

Measures Results
Cutoff
Sensitivity
Specificity
Precision
AUC
 SE

0.17
75.90
75.50
75.06
0.834
0.018

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

V. MODEL EVALUATION USING ROC ANALYSIS

In this section, we present the results of model evaluation.

D. Model Evaluation

The accuracy of the models predicted is somewhat optimistic
since the models are applied on same data set from which they
are derived. To predict accuracy of the model it should be
applied on different data sets thus we performed 10-cross
validation of the models. For the 10-cross validation, the
classes were randomly divided into 10 parts of approximately
equal data points. We summarized the results of cross
validation of predicted models via the LR approach in Table
VI. Table VI shows that AUC calculated by ROC analysis is
very high 0.829. Thus, the accuracy of model obtained from
validation data is similar to the accuracy of model obtained
from training data. The values of sensitivity, specificity and
precision are also high. The researchers and software
practitioners can use the model predicted in early phase of
software development. This will reduce testing effort and
resources.

TABLE VI

RESULTS OF 10-CROSS VALIDATION OF MODEL

Measures Results
Cutoff
Sensitivity
Specificity
Precision
AUC
 SE

0.18
75.30
75.50
75.04
0.829
0.018

The ROC curve for the model given in table VI is shown in
fig. 1.

1.00.80.60.40.20.0

1 - Specificity

1.0

0.8

0.6

0.4

0.2

0.0

S
en

s
it

iv
it

y

Fig. 1: ROC curve of LR Model

VI. THREATS TO VALIDITY

 The study has many limitations that are common with most
of the empirical studies in literature. However, it is necessary
to repeat them here.
 The usefulness of OO metrics for predicting fault proneness
models also depends on the programming language (e.g. C++,
Java) being used. Thus, similar studies with different data sets
are required to be carried out in order to establish the
acceptability of the model.
 Our conclusions are pertinent to only dependent variable
fault proneness, as it seems to be most popular dependent
variable in empirical studies. We do not claim about the
validity of the chosen OO metrics in this study when the
dependent variable changes like maintainability or effort [17].

VII. CONCLUSION

 The goal of this work is to find the effect of OO metrics on
fault proneness. We also empirically analyze the performance
of logistic regression method in order to predict faulty classes.
 Based on the results obtained from open source software
Apache Ant 1.7 data set we analyzed the performance of
predicted defect model using the ROC analysis. We analyzed
the OO metrics including metrics given by Chidamber and
Kemerer and McCabe. Our main results are summarized as
follows:
 Two metrics RFC and CC were included in the model. The
model predicted has higher accuracy with AUC 0.829. Thus,
the model predicted shows that the model predicts faulty
classes of open source software with good accuracy.
 This study confirms that construction of model using
logistic regression method will be effective, adaptable, and
useful in predicting fault prone classes.
 We plan to replicate our study to predict models based on
machine learning algorithms such as support vector machines
and genetic algorithms. We may carry out cost benefit analysis
of models that will help to determine whether a given fault
proneness model would be economically viable.

REFERENCES

[1]. K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra,
“Software Reuse Metrics for Object-Oriented Systems”, Third ACIS
Int'l Conference on Software Engineering Research, Management and
Applications (SERA'05), IEEE Computer Society, pp. 48-55, 2005.

[2]. L..Briand , W.Daly and J. Wust, “Unified Framework for Cohesion
Measurement in Object-Oriented Systems”, Empirical Software
Engineering, vol. 3, pp.65-117, 1998.

[3]. L.Briand , W.Daly and J. Wust, “A Unified Framework for Coupling
Measurement in Object-Oriented Systems. IEEE Transactions on
software Engineering”, Vol. 25, pp.91-121, 1999.

[4]. J.Bieman, B.Kang, “Cohesion and Reuse in an Object-Oriented
System”, Proc. ACM Symp. Software Reusability (SSR’94),
pp.259-262, 1995.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

[5]. M.Cartwright, M.Shepperd, “An Empirical Investigation of an
Object-Oriented Software System”, IEEE Transactions of
Software Engineering, 1999.

[6]. S.Chidamber and C.F.Kemerer, “A metrics Suite for Object-
Oriented Design”, IEEE Trans. Software Engineering, vol. SE-20,
no.6, 476-493, 1994.

[7]. B.Henderson-sellers, “Object-Oriented Metrics, Measures of
Complexity”, Prentice Hall, 1996.

[8]. R.Harrison, S.J.Counsell, and R.V.Nithi, “An Evaluation of
MOOD set of Object-Oriented Software Metrics”, IEEE Trans.
Software Engineering, vol. SE-24, no.6, pp. 491-496, June 1998.

[9]. B.Henderson-sellers, “Object-Oriented Metrics, Measures of
Complexity”, Prentice Hall, 1996.

[10]. M.Hitz, B. Montazeri, “Measuring Coupling and Cohesion in Object-
Oriented Systems”, Proc. Int. Symposium on Applied Corporate
Computing, Monterrey, Mexico, 1995.

[11]. A.Lake, C.Cook, “Use of factor analysis to develop OOP software
complexity metrics”. Proc. 6th Annual Oregon Workshop on Software
Metrics, Silver Falls, Oregon, 1994.

[12]. W.Li, S.Henry, “Object-Oriented Metrics that Predict Maintainability”,
Journal of Systems and Software, vol 23 no.2, pp.111-122, 1993.

[13]. Y.Lee, B.Liang, S.Wu and F.Wang, “Measuring the Coupling and
Cohesion of an Object-Oriented program based on Information flow”,
1995.

[14]. M.Lorenz, and J.Kidd, “Object-Oriented Software Metrics”, Prentice-
Hall, 1994.

[15]. D.Tegarden, S. Sheetz, D.Monarchi, “A Software Complexity
Model of Object-Oriented Systems. Decision Support Systems”,
vol. 13, pp.241-262.

[16]. K.K. Aggarwal, Y. Singh, A. Kaur, R. Malhotra, ”Empirical Analysis
for Investigating the Effect of Object-Oriented Metrics on Fault
Proneness: A Replicated Case Study”, Software Process Improvement
and Practice, John Wiley & Sons, vol. 16, no. 1, pp. 39-62, 2009.

[17]. Y. Singh, A. Kaur, and R. Malhotra, “Empirical validation of object-
oriented metrics for predicting fault proneness models”, Software
Quality Journal, vol. 18, pp.3-35, Jan 2010.

[18]. Y. Singh, A. Kaur, and R. Malhotra, “Predicting Software Fault
Proneness Model Using Neural Network”, Product-Focused Software
Process Improvement, Lecture Notes in Computer Science, pp. 204-
214, 2008.

[19]. Y. Singh, A. Kaur, and R. Malhotra, “Application of Decision Trees for
Predicting Fault Proneness”, International Conference on Information
Systems, Technology and Management-Information Technology,
Ghaziabad, India, 2009.

[20]. V.Basili, L.Briand, W.Melo, “A Validation of Object-Oriented Design
Metrics as Quality Indicators”, IEEE Transactions on Software
Engineering, vol. 22 no.10, pp. 751-761, 1996.

[21]. L. Briand, W. Daly, and J. Wust, “Exploring the relationships between
design measures and software quality”, Journal of Systems and
Software,, vol. 51, no. 3, pp. 245-273, 2000.

[22]. K. El Emam, S. Benlarbi, N. Goel, and S. Rai, “A Validation of Object-
Oriented Metrics”, Technical Report ERB-1063, NRC, 1999.

[23]. T.Gyimothy , R.Ferenc , I.Siket , “Empirical validation of object-
oriented metrics on open source software for fault prediction”, IEEE
Trans. Software Engineering, vol. 31, Issue 10, pp.897 – 910, Oct.
2005.

[24]. Y. Zhou, and H. Leung, “Empirical analysis of Object-Oriented Design
Metrics for predicting high severity faults”, IEEE Transactions on
Software Engineering, vol. 32, no. 10, pp. 771-784, 2006.

[25]. promise. Available at http://promisedata.org/repository/
[26]. I. Samoladas, and I. Stamelos, ”Assessing Free/Open Source Software

Quality”, Department of Informatics, Aristotle University of Thessa-
loniki, Greece.

[27]. T. McCabe, “A Complexity Measure”, IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308-320, 1976.

[28]. J. Hanley, BJ. McNeil, “The meaning and use of the area under a
Receiver Operating Characteristic ROC curve”, Radiology, vol. 143,
pp.29-36, 1982.

[29]. M. Stone, “Cross-validatory choice and assessment of statistical
predictions”, J. Royal Stat. Soc., vol. 36, pp. 111-147, 1974.

[30]. D. Hosmer, S. Lemeshow, Applied Logistic regression, John Wiley
and Sons 1989.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

