


Abstract— Software itself is very complex and studying its
failure is much more complex. Complexity is a relative concept
and defining complexity in software failure is chaotic in nature.
Software failure of complex systems and understanding the
complex system needs some sort of theoretical support for
analyzing the nonlinearity in the system. Complex systems
have attributes like subsystems, composed of nonlinear
dynamic elements and feedback loops. Software Failure is
highly disorganized and unmanageable so the chaos theory is
used to study the behavior of software.

Index Terms—Chaos Theory, Software systems, Software
Failures, on Linear Behavior, Complexity

I. INTRODUCTION

Lorenz gave the classic paradigm of chaos theory and the
butterfly effect [1]. Earlier chaos was not much relevant to
software industry but with the passage of time, the
complexity increased in the systems and development, chaos
theory has become popular. Chaos theory helps in
understanding the situations which lead to disorganized and
unmanageable systems, whilst complexity theory helps to
deal with systems that have a large number of subsystems or
elements and although hard to predict, these systems have
structure and permit improvement [2, 3]. Order and chaos is
emerging science in the software systems, which are very
complex and have nonlinear properties.

Dinesh Kumar Saini is with the Faculty of Computing, Sohar University, Oman.
He is Sr. Research Fellow, Faculty of Engineering and IT, University of Queensland,
Brisbane, Australia. (Corresponding author phone:+968-95784762;

E-mail:dsaini@soharuni.edu.om, d.saini@uq.edu.au).
Moinuddin Ahmad is with the Faculty of Business, Sohar University, Oman (Phone:
+968-95784715 E-mail: mahmad@soharuni.edu.om)

Software systems are in the propensity of a system to be
sensitive to initial conditions so that the system becomes
unpredictable over time. In fig.1 the different phases of
Software Development Life Cycle (SDLC) are shown. If we
allow requirements to be changed in later phases other than
Software Requirement Specification (SRS) that means the
needs of the users of a software system may change over
time, invalidating the requirements laid down in an earlier
phase. In object-oriented software design the emphasis is on
easy maintenance and reuse of the components [4, 10].
Software quality attributes like correctness, robustness,
extensibility, and compatibility must also be addressed
during design [5, 6, and 7].

One of the major questions organizations is “how secure are
my systems from failures?” Answering such a question is
often difficult. The root of most security problems is
software that fails in unexpected ways when under attack
[8]. Despite extensive research in security engineering,
measuring security is still a difficult problem [9]. While we
do not have security measurements with absolute certainty,
we often rely on measurement of risk in assessing security
[11, 12, and 13].

Using risk of violations to evaluate security decisions is a
common practice. It provides a systematic mechanism for
optimizing cost and resources [16, 17, and 18]. The difficult
part lies in providing accurate information on failures and
their likelihood. Since systems are typically exposed to
constant changes, associated risks are often affected by such
changes. However, risk assessments are not typically
repeated as often as changes are introduced into systems.
Over time, initial risk estimates become outdated possibly
leading to less secure systems [13, 14].

Software Failures and Chaos Theory

Dinesh Kumar Saini and Moinuddin Ahmad Member, IAENG

Key Process Area
in Software Quality
Correctness
Usability
Efficiency
Reliability
Integrity
Adaptability
Accuracy
Robustness
Consistency
Maintainability
Flexibility
Portability
Reusability
Readability
Testability
Understandability
Completeness

SRS

Design

Coding

Testing

Maintenance

Domain Analysis

Software Architectural
Decision

Communication Protocols

Platform Decisions

Top-down Design

Bottom-up Design

Programming Language
decision

Black Box Testing

White Box Testing

Client Side

 Structural

 C
 Pascal
 Fortran

 C++
 Java
 C#
 Effile
 Small Talk

 Regression
 Load
 Performance
 Stress
 Time & cost

 Trouble-shooting
 Maintaining software

Design Document:
Algorithm, Flow Chart,
Structured Language.

Design Document:
UML/OOAD
methodology (use case,
class, object, sequence,
collaboration, state,
extended state diagrams)

 Layered
 Client/Server
 Broker
 CORBA
 COM
 DCOM
 MVC
 Pipes

&Filters

Fig.1 SDLC activities for software development

 Object
Oriented

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

II. SOFTWARE FAILURE

Software development industry is a profession from last
sixty years. During this period there have been numerous
success stories as well as many broadly publicized failures.
These publicized failures are either associated with safety
problems or substantial cost overruns and schedule delays in
most of the software development project [20]. The oldest
case of big failure reported is from 16th century old from
the Vasa Tragedy; because of design failure the ship sank at
the time of launch itself.

There are many similar examples like the Therac-25
computer-controlled radiation therapy machine is often cited
as an example of a software safety problem. Because of a
software bug, the Therac-25 massively overdosed six
people. The other similar project failure which is reported
is the automated baggage management system at the new
Denver Airport is often cited as an example of a cost and
schedule delay. At one point, this delay was costing the city
of Denver over $1 million a day in interest and operating
costs [15]. There are many more examples of these projects
in the literature. There are two categories of the projects one
is called projects as runaway projects and the second one is
called death-march projects [19].

One recent study reported that 31.1% of all corporate
software development projects are canceled before they get
completed and 52.7% are costing 189% of their original
estimates (Standish Group International, report). The
reasons for the project failure are analyzed and finding
conveys that failure happened because of either a project
that has been canceled or a project that does not meet its
budget, delivery, and business objectives [21, 22].

Project success is measured in terms of completing the
project in budget, delivery, and business objectives. The
average software project success rate in the Standish study
is an abysmal 16.2%. Researchers have determined that
software developers have much higher achievement needs
than the general population. How do software developers
reconcile their high achievement needs in a profession with
an advertised failure rate of 84%? This question is not easy
to answer and efforts are made in the paper to analyze the
failure and its nature which is quite complicated for the
project failure through the perspective of the software
developers that worked on a software development project
failure.

Software failure is exploited to develop a model of dynamic
program complexity for the identification of failure prone
software. Based on this new look at software failures the
areas of interest in software reliability is examined.
Software complexity is the main factor that leads to chaotic
behavior in the case of failure. The use of dynamic
complexity and failure models is incorporated into a
software reliability model. Finally, the characteristics of
software faults and failures are modeled; two degrees of
freedom in the software design process are identified
representing an initial step in the mathematical specification
of software design objectives.

“Chaos” is a term that describes pseudorandom behavior
generated by a system that is both deterministic, and

nonlinear. Nonlinear dynamic methods, including Poincare
map, fractal dimension, correlation dimension, Kolmogorov,
entropy, and Lyapunov exponents, can analyze irregular or
chaotic activities. Nonlinear dynamic analysis methods need
not replace existing methods, but they could improve the
array of fault analysis tools available to the tester. The
combination of traditional and nonlinear dynamic analyses
could potentially improve our ability to analyze test cases
from the software with faults.

In today’s world of competition when companies are
competing very tightly with each other in the software
development environment, development cost must be
optimized, time to market must be reduced and decisions
needed for performing the same must be supported with the
testing data and failure rate. Software development is done
both in-house and outsources and field failure rate helps the
development environment. Software reliability growth
models help to cheek the robustness of the software
developed but still it doesn’t give guaranties for the failures.

Fault removal is non instantaneous and most of the software
development environments involve third parties, off the self
and semi custom hardware and software. Most of the
software development has supplier focus on development of
high value applications and system integration. When
software failure occurs it create an uncertainty in the
environment and removing this fault require lot of efforts
and longer time [23].

Parameter estimation and variation in the parameter
estimation help in predicting the software fault and
confidence interval for the same [24, 25].

Sensitivity analyses are conducted to estimate the
uncertainties in the failure rate prediction. Process control
and on line transaction processing are some of the
application that require high availability and failures cannot
be accepted for such applications. For some critical
applications like server applications, downtime leads to lost
productivity and lost business.

All most all the companies and organizations of any nature
highly depend on the software and its failure leads to loss of
business and time. With the tremendous growth of e-
commerce, almost every kind of organization is becoming
dependent upon highly available systems. System
availability is highly affected by the software failure.
Unfortunately, software failures severely reduce system
availability. Arecent Gartner Dataquest surveyed around
three hundred companies of all sizes and across diverse
industry segments showed that software defects account for
27% of system failure. Concurrency and memory-related
bugs are common software defects, causing more than 60%
of system vulnerabilities [CERT/CC] and accounting for
33–43% of the reported bugs in mature database
management systems and operating systems. For this
reason, software companies invest enormous effort and
resources on software testing and bug detection prior to
releasing software [27, 28].

However, software failures still occur during production
runs since some bugs inevitably slip through even the

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

strictest testing. Therefore, to achieve higher system
availability, mechanisms must be devised to allow systems
to survive the effects of un-eliminated software bugs to the
largest extent possible.

Earlier work on surviving software failures can be classified
into four categories.

The first category encompasses those techniques which
were designed to handle either transient hardware failures or
nondeterministic software bugs, which could not deal with
deterministic software bugs, a major cause of software
failures [29 and 30].
Another major limitation of these methods is service
unavailability
However, it requires legacy software to be reconstructed in
a loosely coupled fashion. The second category includes
general check pointing and recovery. The most straight
forward method in this category is to checkpoint, rollback
upon failures, and then re executes either on the same
machine. Similar to the whole program restart approach,
these techniques were also proposed to deal with hardware
failures, and therefore suffer from the same limitations in
addressing software failures.
 In particular, they also cannot deal with failures caused by
deterministic bugs. Progressive retry and environment
diversity are interesting improvement over these
approaches. They increase the degree of program execution
non determinism by either reordering messages or creating
diverse OS environment. While proposing a promising
direction, they limit the technique to message reordering or
diverse OS environment creation, such as process migration.
As a result, they cannot handle bugs unrelated to message
order or OS environment. For example, if a server receives a
malicious request that exploits a buffer overflow bug. Their
approaches will not solve the problem. The most aggressive
approaches in the check pointing/recovery category include
recovery both of which rely on different implementation
versions upon failures.

III. FAULT AND BUG ANALYSIS AND SOFTWARE FAILURE

Software bug is a very complicated issue and when it affects
the software, failure is certain, now how to analyze the bug
and its impact is a tough task for the testers and developers.
In this papers we are trying to find out the reasons of the
failures and failure effects in the development environment.
The software bug can be of deterministic or non-
deterministic nature, now the question arises is how to find
out which kind of the bug appeared in the software and how
it will affects the development. These approaches may be
able to survive deterministic bugs under the assumption that
different versions of the software fail independently. This is
not guarantees because programmers tend to make similar
mistakes [31, and 32].

There are other issues and to approach them is very
expensive and if adopted by software companies, the
software development costs get doubled. An alternative to
N-version programming is data diversity that tries to

execute multiple copies of the same program, each with a
different form of the input [33].

A theoretical framework can be proposed but still the
validation is required from the practical tests which are not
easy to work out in non-monitored software development
environment. In particular, it does not answer how to apply
the idea transparently without modifying the application and
without causing major performance degradation during
normal execution. Some applications comprise application-
specific recovery mechanisms, such as the multi process
model (MPM), exception handling, etc. Some multi
processed applications, such as the old version of the
Apache HTTP Server and the CVS server, spawn a new
process for each client connection and therefore can simply
kill a failed process and start a new one to handle the
unanswered request. While simple and capable of surviving
certain software failures, this technique has several
limitations.

There are different approaches for the bug analysis and
these includes First, if the bug is deterministic, the new
process will most likely fail again at the same place given
the same request (e.g., a malicious request). Second, if a
shared data structure is corrupted, simply killing the failed
process and restarting a new one will not restore the shared
data to a consistent state, therefore potentially causing
subsequent failures in other processes. Other application-
specific recovery mechanisms require software to be failure-
aware, which adversely affects programmability and code
readability. The fourth category includes several recent
nonconventional proposals such as failure-oblivious
computing [34] and the reactive immune system [34].
Failure-oblivious computing proposes to deal with buffer
overflows by providing artificial values for out-of-bound
reads, while the reactive immune system returns a
speculative error code for functions that suffer software
failures (e.g., crashes). While these approaches are
fascinating and may work for certain types of applications
or certain types of bugs, they are unsafe to use for
correctness-critical applications (e.g., on-line banking
systems) because they “speculate” on programmers’
intentions, which can lead to program misbehavior. Even
worse, the problem becomes much harder to detect if the
speculative “fix” introduces a silent error that does not
manifest itself immediately. In addition, such problems, if
they occur, are very hard for programmers to diagnose since
the application’s execution has been forcefully perturbed by
those speculative “fixes.” Besides the above individual
limitations, existing work provides insufficient feedback to
developers for debugging. For example, the information
provided to developers may include only a core dump,
several recent checkpoints, and
an event log for deterministic replay of a few seconds of
recent execution. To save programmers’ debugging effort, it
is desirable if the runtime system can provide information
regarding the bug type, under what conditions the bug is
triggered, and how it can be avoided. Such diagnostic
information can guide programmers in the debugging
process and thereby improve their efficiency.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

IV. CHAOS THEORY

There is several prediction methods described in chaotic
series. Some of the common methods are the first-order
local-region method, the whole domain method, the local-
region method, the weighted first-order local-region
method, the Lyapunov exponent method and neural
networks. The Lyapunov exponent is one of the main
methods which characteristics’ indices of chaos and can be
used to assess chaotic characteristics as well as chaotic
prediction with great accuracy. Considering the prediction
accuracy and the characteristics of software failure
prediction, Lyapunov exponent method is selected.

Figure 2 Chaos Theory Triangle

Chaos identification is the process of identifying the
behavior of the software which is highly un- deterministic
and that leads for the behavior of software failures to be
chaotic. Correlation dimension is one of characteristic
parameters of chaos. Based on chaos theory, the correlation
dimension D increases with the embedding dimension m
[11]. If D, converges at a stable value, the time
Series is chaotic, else it is stochastic.

A. Theory Formulation

1. Instability of behavior and system.
2. Non – linearity.
3. Emergent order

 Is a nonlinear vector field

 F: m m represents the flow that determines
the evaluation of (x) t.

x (t) for initial condition x(0).

B. CHAOS

Initial condition sensitivity is measured by determine
number of exponent Lyapunov (λ)

Mathematical representation of the formal equation of
exponent Lyapunov (λ)

For given i, [Pi (t)] dimension is λ=

Logistic function calculation will be

λ = exponent Lyapunov
t = t – period
Pi (t) = data I for t - period
Pi (0) = data I for initial period
Xn = data – n
N = number of data
r = input parameters

Chaos
λ < 0 state of the system stable
λ = 0 system in steady state
λ > 0 condition of system is chaotic
Fractal dimension
Accommodating objects in its space.
Arranging variable in dynamic system
 Fractal dimension

Where N = number of circles
d = diameter of the circle
D = Fractal dimension

Correlation dimension can be used to measure the fractal
dimension with correlation integral Cm(R).

Correlation integral is probability in attractor which have a
distance R among the other point.

Where
 N = Number of observation
 R= distance
 = correlation integral of m-dimension

Chaos is the phenomena which seems random in nature and
irregular which emerge from deterministic systems [5]. It
can be describe chaos as the outcome of tangible systems
with nonlinear interdependent variables with sensitive
dependence on initial conditions. Such systems are
determined by precise laws, but due to the sensitive

Software
Environmental Risk

Control
Action

Intelligent
Monitoring

Triangle for Software Risk and Failure

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

dependence on initial conditions, their behavior possesses
an amount of randomness.

Chaos is a new kind of state of nonlinear systems. Sensitive
dependence on initial conditions is the key feature of chaos.
For example, there are deterministic systems in which an
initial difference of one unit between two states will
eventually increase to a hundred units, or even a million
units. However small the initial difference is, it will evolve
bigger and bigger with time. It is this that renders long-term
predictability impossible [6] the behavior of the chaos is
plotted which comes like a butterfly and it is called butterfly
effect.

V. BEHAVIOR MODELING OF CHAOS THEORY

Figure 3 Chaos Theory Behavior Plot

In the paper chaos theory is to be applied in the software
systems, one the best way to do is to apply chaos theory on
software reliability assessment which can be quantified and
can be observed. Conventional SRGM specify the form of a
random process that describes the behavior of software
failures which is deterministic in some way. It possesses
chaos as well as randomness.

Because of resource and time constrained we did not tested
our chaotic nature but other parallel studies support the
argument that as shown in the results, it fits well for the
actual data sets which are chaotic. The goodness-fit of the
proposed method based on chaos theory with the
conventional stochastic SRGM JM model and NHPP model
can be tested on the real data sets. Comparison can be done
for finding how the proposed method fits better than the
conventional stochastic SRGM JM model and NHPP mode
for the actual data sets which are chaotic.

VI. CONCLUSION

Software development and software projects are very
complex systems and success or failure of the software
systems have great impact on the business. In the paper we
started with the concept of SDLC, its various activities,
software bug analysis and software failures. All the possible
causes of failure and its effects on the systems and its
natures is studied in the paper. Formal theory of Chaos is
formulated for the software systems and software
development process.
Software success or failure concept needs a new theory or
paradigm which can suggest why and how failure happened.
An extensive framework must be formulated for quantified
success and failure for the software development and
projects.
The current definition of software project success may be
too narrowly defined and may create negative perceptions
about software developers. There also may be instances
when these failure statistics are used as fear-based
advertisements for consultant services.

VII. LIMITATIONS

Limited by test conditions and data sources, only a
preliminary research on chaotic prediction of the spatial
series of our software failure desorption index of software is
carried out. The universality of our conclusions still needs
further testing, analyses and arguments.

ACKNOWLEDGEMENT

This paper is presented from the conference support fund
from the Sohar University. Authors are thankful for the
Sohar University research office and faculty colleagues for
the support. The authors are thankful for the conference
editor and reviewer for the valuable review and suggestions.

REFERENCES

[1] E. Lorenz, “Deterministic no periodic flow”, Journal of
Atmospheric Science 20 (1963) 130–141

[2] A. Zahra, C. Ryan, “From chaos to cohesion—complexity in
tourism structures: an analysis of New Zealand's regional
tourism organizations”, Tourism Management 28 (3) (2007)
854–862.

[3] R. Axelrod, M. Cohen, “Harnessing Complexity:
Organizational Implications of a Scientific Frontier”, the
Free Press, New York, 1999.B. Smith, “An approach to
graphs of linear forms (Unpublished work style),”
unpublished.

[4] Dinesh Kumar Saini and Nirmal Gupta “Fault Detection
Effectiveness in GUI Components of Java Environment
through Smoke Test”, Journal of Information Technology,
ISSN 0973-2896 Vol.3, issue3, 7-17 September 2007.

[5] Gu, w., kalbarczyk, z., iyer, R. K., and yang, z.-y.
“Characterization of Linux kernel behavior under errors”. In
Proceedings of the International Conference on Dependable
Systems and Networks. 2003.

[6]]Dinesh Kumar Saini and Nirmal Gupta “Class Level Test
Case Generation in Object Oriented Software Testing”,
International Journal of Information Technology and Web
Engineering, (IJITWE) Vol. 3, Issue 2, pp. 19-26 pages,
march 2008.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

[7] Prvulovic, M. And Torrellas, J, “Reenact: using thread-level
speculation mechanisms to debug data races in multithreaded
codes” In proceedings of the 30th international symposium on
computer architecture. 2003

[8] Dinesh Kumar Saini and Hemraj Saini "VAIN: A Stochastic
Model for Dynamics of Malicious Objects", the ICFAI Journal
of Systems Management, Vol.6, No1, pp. 14- 28, February
2008.

[9] Hemraj Saini and Dinesh Kumar Saini "Malicious Object
dynamics in the presence of Anti Malicious Software”
European Journal of Scientific Research ISSN 1450-216X
Vol.18 No.3 (2007), pp.491-499 © Euro Journals Publishing,
Inc. 2007 http://www.eurojournals.com/ejsr.htm

[10] Hallem, S., Chelf, B., Xie, Y., and Eengler, D. “A system and
language for building system specific, static analyses”. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation. 69–82.,
2002.

[11] Dinesh Kumar Saini, Jabar H. Yousif, and Wail M. Omar
“Enhanced Inquiry Method for Malicious Object
Identification” ACM SIGSOFT Volume 34 Number 3 May
2009, ISSN: 0163-5948, USA.

[12] Dinesh Kumar Saini “Sense the Future” Campus Volume 1-
Issue 11, Page No14-17, February 2011.

[13] Dinesh Kumar Saini and Moinuddin Ahmad “Modeling of
Object Oriented Software Testing Cost” The 2011
International Conference on Software Engineering Research
and Practice (SERP'11), World Congress in computer Science
and Engineering, July 18-21, 2011, Las Vegas, USA. Pp.
333-339.

[14] Dinesh Kumar Saini and Moinuddin Ahmad “Enhanced
Software Quality Economics for Defect Detection Techniques
Using Failure Prediction” The 2011 International Conference
on Software Engineering Research and Practice (SERP'11)
World Congress in computer Science and Engineering July
18-21, 2011, Las Vegas, USA, PP. 346-351.

[15] Rinard, M., Cadar, C., Dumitran, D., Roy, D. M., Leu, T., and
Beebee, jr., W. S, “Enhancing server availability and security
through failure-oblivious computing”, In proceedings of the
6th symposium on operating system design and
implementation. . 2004

[16] Dinesh Kumar Saini, Sanad Al Maskari and Hemraj Saini,
“Malicious Object Trafficking in the Network” IEEE IDCTA-
2011, Korea, August 13-16, 201

[17]] Dinesh Kumar Saini, Sanad Al Maskari and Lingaraj
Hadimani “Mathematical Modeling of Software Reusability”
3rd IEEE International Conference on Machine Learning and
Computing (ICMLC, 2011) Singapore, February 26-28, 2011,
IEEEXplore, 978-1-4244-9253-4/11

[18] Dinesh Kumar Saini and Hemraj Saini "Achieving Quality
Through Testing Polymorphism in Object Oriented
Systems",3rd International Conference on Quality, Reliability
and INFOCOM Technology (Trends and Future Directions),
2-4 December, 2006, Indian National Sciences and
Academics, New Delhi (India). Conference proceeding.

[19] Li, z., Tan, l., Wang, X., lu, s., Zhou, Y., and Zhai, C. “Have
things changed now? an empirical study of bug
characteristics in modern open source software”. In
Procedings of the 1st Workshop on Architecture and System
Support for Improving Software Dependability. 2006

[20] Dinesh Kumar Saini and Hemraj Saini “Static Code
Analysis”, NSCOMCS-2005 Proceeding of National Seminar
on Mathematics and Computer Science sponsored by UGC.

[21] Lowell, D. E., Chandra, S., and Chen,P. M. “Exploring
failure transparency and the limits of generic recovery”. In
proceedings of the 4th symposium on operating system design
and implementation. 2000.

[22] Dinesh Kumar Saini and Hemraj Saini “Identification and
characterization of software testing process for object
oriented systems”, National Conference on Mathematical

Analysis and its Applications in Real -World Problems,
Berhampur University, September 2006

[23] Plank,J. S., Li, K., and Puening, M. A. “Diskless check
pointing” . IEEE transactions on parallel and distrib. Syst. 9,
10, 972–986. 1998.

[24] Dinesh Kumar Saini and Hemraj Saini “Software Metrics and
Mathematical Models in the Software Development
Environment for Improving its Quality”, National Conference
on Mathematical Modeling, BITS Pilani, Oct.2005

[25] Qin, F., Lu, S., and Zhou, Y. “Safemem: exploiting ecc-
memory for detecting memory leaks and memory corruption
during production runs”, In proceedings of the 11th
international symposium on high-performance computer
architecture. 2005.

[26] [18]Dinesh Kumar Saini and Hemraj Saini “Analytical Study
of Mathematical Models For Software Reusability Metrics in
Software Development Environment” National Conference on
Mathematical Modeling and Analysis – October 2004.

[27] Rodrigues, R., Castro, M., and Liskov, B.. Base: “using
abstraction to improve fault tolerance”, in proceedings of the
18th symposium on operating systems principles. 2001

[28] Sidiroglou, S., Locasto,m. E., Boyd, S.W., and Keromytis,
A.D. “Building a reactive immune System for software
services”, In proceedings of the usenix annual technical
conference. 2005.

[29] Dinesh Kumar Saini and Hemraj Saini “Compliance
Management Framework and Methodology”, 8th
International Research Conference on Quality, Innovation and
Knowledge Management, Feb 11-14, 2007 at IMT New Delhi
Sponsored by CII, IBEF, Monash University .

[30] Swift, M., Annamalai, M., Bershad, B. N., and Levy, H. M.
“Recovering device drivers”, In proceedings of the 6th
symposium on operating system design and implementation.
2004.

[31] Dinesh Kumar Saini and Hemraj Saini “Statistical Modeling
of Extensibility in software” 3rd International Conference on
Quality, Reliability and INFOCOM Technology (Trends and
Future Directions), 2-4 December, 2006, Indian National
Sciences and Academics, New Delhi (India). ISBN 81–7446–
434–4 Conference proceeding.

[32] Russinovich,m. And cogswell, b. Replay for concurrent non-
deterministic shared-memory applications. In proceedings of
the acmsigplan conference on programming language design
and implementation. 1996.

[33] Srinivasan, s., andrews, c., kandula, s., and zhou, y.
Flashback: a light-weight extension for rollback and
deterministic replay for software debugging. In proceedings
of the usenix annual technical conference. 2004.

[34] Staniford, s., paxson, v., and weaver, nHow to own the
internet in your spare time. In proceedings of the 11th usenix
security symposium. . 2002.

[35] Stoller, s. D.. Testing concurrent java programs using
randomized scheduling. In proceedings of the 2nd workshop
on runtime verification. 2002

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

