
 

  
Abstract— Capacity and density of embedded memories have 

rapidly increased therefore they have higher probability of 
faults. As a result, yield of system-on-a-chip designs with 
embedded memories drops. Built-in self-repair is widely used to 
improve manufacturing yield by replacing faulty memory cells 
with redundant elements. Most approaches perform 
reconfiguration on the row/column level. Block-based 
redundancy architectures divide memory and redundancies 
into blocks, performing reconfiguration on the block level and 
offering more efficient usage of the redundant elements. 
However, existing block-based approaches implement simple 
redundancy analysis algorithms which lead to non optimal 
repair rates. This paper proposes a new approach for block-
based redundancy architectures, improving repair rates of 
previous approaches by utilizing a fast hybrid redundancy 
algorithm with low area overhead and optimal repair rate. 
 

Index Terms—embedded memory, yield, built-in self-repair, 
built-in redundancy analysis 
 

I. INTRODUCTION 

HE density of modern system-on-a-chip (SoC) designs 
is growing rapidly, so is the capacity and density of 

memories embedded within them. As a consequence, 
embedded memories have higher probability of faults and 
their manufacturing yield drops. Since embedded memories 
are occupying the majority of nowadays SoCs area (90 % 
according to [1]), they are the main source of faults in SoCs 
and they also dominate the overall SoC yield. 

To improve reliability and manufacturing yield, the most 
widely used approach is to add some redundancy to the 
memories. Faulty memory cells are replaced by redundant 
elements. In the case of SoC, memory testing and repair are 
provided in the chip itself (built-in self-repair, BISR), 
because it is more cost effective than using external test 
equipment. 

The BISR approach has three main functions. First, 
memories are tested for various types of faults by built-in 
self-test (BIST). Based on the fault information provided by 
BIST, memories are analyzed by the redundancy analysis 
(RA) algorithms which generate repair solutions for 
memories. Repair solutions consist of information on which 
redundant elements are to be addressed instead of every 
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single faulty cell. Execution of RA algorithms is controlled 
by built-in repair analysis (BIRA). Repair solutions provided 
by BIRA are applied to memories by address reconfiguration 
(AR) which ensures that respective redundant elements are 
addressed instead of faulty memory cells. 
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Fig 1.  Built-in self-repair architecture. 

 
Fig. 1 shows the BISR architecture and its three main 

blocks: BIST, BIRA and RA. BISR function is started by 
activating BISR_start signal. When BISR function is 
finished, BISR_done signal is activated. If memory can be 
repaired, repairable signal is active. In case memory is un-
repairable, repairable signal is not active. This may be due 
to insufficient number of redundant elements when fault 
density is high or due to usage of RA algorithm with non-
optimal repair rate. 

Fault information from BIST is processed in BIRA. This 
information is provided in the form of fault locations in the 
memory. Three main features of BIRA are area overhead, 
repair rate and analysis speed [2]. Smaller area overhead 
reduces chip production cost. Low repair rate impacts yield 
negatively and speed affects the cost of repair. Repair rate 
represents the ability of an RA algorithm to find a repair 
solution for the memory and is defined as follows: 

 
          good memories after BIRA 

repair rate =  
               # of total memories 

 

The number of total memories includes both repairable 
and un-repairable memories. Un-repairable memories can be 
produced by various factors [2] and this may negatively 
influence the repair rate of RA algorithms that are evaluated 
using this value. Normalized repair rate was introduced in 
[2] and is defined as follows: 

 
              good memories after BIRA 
             normalized repair rate =  
                 # of repairable memories 
 

It is not dependent on the aforementioned factors, and 
therefore is more appropriate to evaluate the RA algorithms.  
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Fig 3.  Redundancy architectures. 

 
Optimal repair rate is achieved when the normalized repair 
rate is 100 % [2]. Ideal BIRA has optimal repair rate with 
zero area overhead and analysis time. Finding a repair 
solution is NP-complete problem [3] and various BIRA 
approaches have been proposed that have tried to balance 
these three main factors [2], [4] - [6]. Some general 
observations on how to obtain optimal repair rate with BIRA 
are listed in [2]. 

To be able to analyze fault information, BIRA needs to 
store it in some way. Approaches that utilize fault bitmaps of 
various sizes to store fault information have been shown to 
have negative impact on repair rate since some fault 
information is often omitted. Better repair rates were 
achieved by using of storage registers and content-
addressable memories (CAM) [2], [5], [6]. 

Two important tasks of BIRA are fault collection (from 
BIST) and redundancy analysis of redundant elements. Both 
tasks are performed by RA algorithm. Based on the time of 
execution of these two tasks, we distinguish three types of 
RA algorithms [2]. Fig. 2 shows a comparison of RA 
algorithms. Static RA algorithms perform RA after all fault 
information has been collected and stored in fault bitmap. 
This results in increased time it takes the algorithm to finish 
(slower analysis speed) and high area overhead. Static RA 
algorithms are neither suitable nor used in built-in solutions. 
Dynamic RA algorithms perform RA in parallel with fault 
collection. When BIST is finished, RA is also finished. Time 
to finish is shorter and area overhead is lower than in static 
RA algorithms, but repair rates are not optimal. Hybrid RA 
algorithms perform RA concurrently with fault collection, 
but after BIST finishes, RA continues for some time. Using 
hybrid RA algorithms, optimal repair rates can be achieved 
at the cost of slight increase in time and area overhead 
compared do dynamic RA algorithms. 

 

Fig 2.  Classification of RA algorithms. 

 
The types of redundant elements used in memories can be 

classified into four types as shown in Fig. 3 on memories of 
size 8x8. Faulty cells are denoted by the "X" symbol. 
Redundant elements are represented as solid lines at the 
sides of memories and repair solutions are denoted by strike-
through lines in memory arrays. 1-D redundancy 
architectures incorporate only one type of redundant 
elements (rows or columns) into memories. Fig. 3 (a) shows 
an example where only redundant columns are used. While 
this approach is easy to implement, RA algorithms are 
simple and area overhead is low, it suffers from non-optimal 
repair rates in larger memories. 2-D redundancy 
architectures are the most widely used and most BIRA 
approaches are based on it. Both redundant rows and 
columns are added to the memory as shown in Fig. 3 (b). 
With 2-D redundancy, optimal repair rates can be achieved 
at the cost of enlarging area overhead needed to implement 
more complex RA algorithms. Local and global block-based 
redundancy architectures were proposed recently. They are 
based on divided word line (DWL) and divided bit line 
(DBL) architectures [5], [6]. Memory and redundancies are 
divided into number of blocks (divided blocks) and 
reconfiguration is performed on the block level instead of 
row/column level as in 1-D and 2-D redundancy 
architectures. For example, memories are divided into 4 
blocks and redundancies are divided into 2 blocks, in Fig. 3 
(c) and (d). If local blocks are used, blocks of redundancies 
are restricted to be used only in their respective memory 
blocks [5]. Global blocks can be used in any memory block 
therefore providing better repair rates than local blocks [6].  

Among various RA algorithms for 2-D redundancy 
architectures, selected fail count comparison (SFCC) showed 
the best performance in matters of repair rate, area overhead 
and analysis speed [2]. SFCC is a hybrid RA algorithm that 
builds a fault line-based searching tree that searches through 
repair solution space faster than previous approaches based 
on cell-based searching trees thus improving analysis speed. 
Its fault storing structure is based on CAMs and it focuses on 
reducing storage requirements by discarding some 
overlapping fault addresses. Among a few known RA 
algorithms for block-based architectures, modified essential 
spare pivoting (MESP) showed the highest but not optimal 
repair rate [6]. MESP is based on essential spare pivoting 
(ESP) algorithm [3], which focuses on low area overhead 
and fast analysis speed, but cannot guarantee optimal repair 
rates in 2-D architecture. It is a dynamic RA algorithm that 
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builds a repair solutions based on identification of pivots 
(first faults found in a row or column in divided blocks) 
often omitting some fault information which leads to non-
optimal repair rates. 

RA algorithms used in known block-based redundancy 
architectures achieved non-optimal repair rates [5], [6]. In 
this paper, we propose a block-based redundancy 
architecture with global redundancy, which uses modified 
SFCC (MSFCC) algorithm based on SFCC to improve 
repair rates of previous block-based approaches. Table 1 
clarifies the idea proposed in this paper. 

II.  PROPOSED BUILT-IN REPAIR ANALYSIS APPROACH 

We use global block-based redundancy architecture as in 
MESP and classification of memory faults based on SFCC. 
Single fault does not share either row or column address 
with any other fault in the divided memory block. Sparse 
fault shares its row (column) address with at least one other 
fault in the divided memory block, but not more than C (R) 
faults, respectively. C and R denotes the number of available 
redundant column and row blocks in the memory, 
respectively. Must-repair fault shares its row (column) 
address with more than C (R) faults in the divided memory 
block. 
 

TABLE I 
COMPARISON OF RA ALGORITHMS 

RA In 2-D architecture In block-based architecture 

ESP low repair rate 
low area overhead 

- 

MESP presumably 
same as ESP 

non-optimal repair rate 
low area overhead 

SFCC optimal repair rate 
higher area overhead 

- 

MSFCC presumably 
same as SFCC 

proposed 

   

 

Proposed approach is based on SFCC. It uses a group of 
CAMs for storing fault information. When fault information 
collection is finished, all faults are classified into three types. 
Must-repair faults are repaired first using respective 
available redundant elements. After must-repair faults have 
been repaired, remaining redundant elements are used to 
repair sparse faults by utilizing an auxiliary buffer structure. 
After sparse faults have been repaired, remaining single 
faults are repaired using remaining redundant elements 
randomly.  

Proposed fault collection structure is based on SFCC and 
is shown in Fig. 4. Information on must-repair faults is 
stored in MR/MC CAMs in Fig. 4 (a). Information on faults 
that are found first in their respective row or column (i.e. 
pivots or parents) is stored in PA CAMs in Fig. 4 (b). 
Information on faults that share row or column address with 
parent faults (named child faults) is stored in CH CAMs in 
Fig. 4 (c). Maximum number of must-repair CAMs for rows 
(MR) and columns (MC) is R and C, respectively. Maximum 
number of parent CAMs is R + C. Maximum number of 
child CAMs is R.(C – 1) + C.(R – 1). Fault collection is 
finished when BIST is finished. 

In Fig. 4, all enable flags are set to 1 if corresponding 

CAM is used to store fault information, otherwise it is 0. 
Block row and block col fields denote the divided block row 

 

Fig 4.  Fault collection structure of MSFCC. 

 
and column address in which the fault is localized, 
respectively. The idea of how these values are derived is 
shown in Fig. 5 (b), which depicts the same type of memory 
as shown in Fig. 3 (d). Must r/c addr tag identifies the row or 
column address of the must-repair faults stored either in MR 
or MC CAMs, respectively. Row addr and col addr fields 
denote the row and column address of parent faults in 
divided blocks, repsectively. Row repeat fail count and col 
repeat fail count fields store the number of how many child 
faults share the same row or column address with their 
parent faults, respectively. PA pointer points to a respective 
PA CAM in which the parent fault information is stored. 
Addr descriptor is set to 0 if the child fault shares the 
column address with its parent fault, otherwise it is 1. Row / 
col addr field denotes the row address of child fault if add 
descriptor is 0, otherwise it denotes the column address. 

Proposed approach uses auxiliary buffer structure based 
on sparse faulty line buffer [2] and is shown in Fig. 5 (a). 
Maximum number of lines in auxiliary buffer (denoted as L) 
is 2.(R + C) if R + C is even, otherwise 2.(R + C – 1) + 1. In 
Fig. 5(a), enable flag, block row and block col fields have 
the same purpose as in Fig. 4. R/C flag is set to 1 if the 
sparse faults share the same column address, otherwise it is 
0. R/C sparse addr field denotes the row or column address 
of the sparse faults if R/C flag is 0 and 1, respectively. Line 
fault count field stores the information on how many sparse 
faults are sharing the same row or column address if R/C 
flag is set to 0 and 1, respectively. The contents of a L-bit 
intersection flag field are set by analyzing the intersected 
faults (a fault, which shares both row and column address 
with at least one other sparse fault). The number of buffer 
line which stores the information about the row and column 
of the sparse fault by is denoted by i and j, respectively. 
Then the j-th bit of this field in i-th buffer line and the i-th 
bit in j-th buffer line are both set to 1. 
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Fig 5.  Auxiliary buffer structure of MSFCC. 

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

  

 

Fig 6.  Example of MSFCC algorithm. 

 
Repair solution for sparse faults is derived by analyzing 

the information in auxiliary buffer. MSFCC searches the 
solution space by counting the number of faults covered 
(NFC) for each line combination from auxiliary buffer. For a 
combination of lines to be the correct repair condition, the 
value of NFC has to satisfy the following condition [2]: 

                            NFC ≥ TF - (R + C - S)                          (1) 

where TF is total number of faults remaining in the 
memory after the must-repair faults have been repaired and 
S is the number of lines in the selected combination. 

III.  EXAMPLE 

We show the function of proposed RA algorithm on the 
example in Fig. 6. Fig. 6 (a) depicts one of four divided 
memory blocks of the same memory type and with same 
number of redundant elements (R = 2, C = 4) as in Fig. 3 (d). 
This block has row and column addresses both equal to 0 
(Fig. 5 (b)). Other three blocks are fault free and are not 
pictured. Total size of the memory in this example is 
therefore 16x16, but all faults are located only in one of its 
divided blocks. 

The numbers of CAMs needed are as follows: 2x MR, 4x 
MC, 6x PA and 10x CH CAM. Faults in the memory are 
detected in the order as shown in Fig. 6 (b). After detection 
of the last fault, the contents of must-repair, parent and some 
child CAMs are shown in Fig. 3 (c), (d) and (e), 
respectively. Column with address 1 (column 1) is repaired 
first, as it contains three must-repair faults (#3, #5 and #6 in 
Fig. 6 (b)), therefore the value of C changes from 4 to 3. 

There now remains a total of 7 faults (4 sparse and 3 
single). To repair sparse faults (#1, #8, #9 and #10), 
auxiliary buffer structure is introduced. The contents of 
auxiliary buffer structure after repairing of must-repair faults 
are shown in Fig. 7. The number of buffer lines needed is 
12, but only the first 4 are shown. 

 

Fig 7.  Example of usage of auxiliary buffer structure. 

 
In Fig. 7, the first line stores the information about 

column 4, the second line about row with address 1 (row 1) 
and the third line about row 5. All of them does have the 

same number of 2 sparse faults in them. Intersected faults 
are #1 (row 5, column 4) and #8 (row 1, column 4). 
Therefore the intersection flags are set to indicate the 
intersection between first and third buffer line (for fault #1) 
by setting the third bit in first buffer line and the first bit in 
the third buffer line to 1 and likewise between the first and 
the second line (for fault #8). 

 

Fig 8.  Determining repair solution in MSFCC. 

 
Now, MSFCC counts the values of NFC for all possible 

combinations of repair solutions for sparse faults. The 
results are shown in Fig. 8. 

In this example, the values of TF, R and C are 7, 2 and 3, 
respectively. For a combination to be the correct repair 
solution, the value of NFC, according to (1) has to be more 
or equal to 3 for S = 1. In Fig. 8, no solutions for S = 1 
satisfy this condition. For S = 2, the value of NFC has to be 
more or equal to 4. In Fig. 8, only one solution satisfies this 
condition, so this is selected by MSFCC as the correct repair 
solution for this example. Sparse faults are repaired using 2 
redundant row blocks to replace rows 1 and 5. The value of 
R is changed from 2 to 0. The value of C remains 3. 

 

Fig 9.  Comparison of MSFCC and MESP algorithms. 

 
After the must-repair and sparse faults have been repaired, 

MSFCC repairs the remaining single faults (#2, #4 and #7) 
by remaining three redundant column blocks. The final 
repair solution by MSFCC is shown in Fig. 9 (a). For 
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comparison, the solution for this example found by the 
MESP algorithm is shown in Fig. 9 (b). As shown in Fig. 9 
(b), MESP is not able to find a repair solution for this 
example as one fault is left un-repaired and marks this 
memory as un-repairable. This shows the potential of 
MSFCC to improve the repair rates of previous RA 
algorithms used in block-based redundancy architectures. 

IV.  CONCLUSION 

A new block-based redundancy architecture for built-in 
self-repairing of embedded memories is proposed in this 
paper. It is based on DWL and DBL techniques and can be 
used in modern SOC designs to improve manufacturing 
yield. 

The proposed redundancy analysis approach is based on 
modified SFCC algorithm (MSFCC) which is supposed to 
have better repair rate for memories than that of previous 
RA algorithms used in block-based redundancy 
architectures. Area overhead of the proposed approach is 
supposed to be higher than that of previous block-based 
architectures since more complex RA algorithm is used. 
However, further experiments on this are yet to be 
performed. 
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