

Abstract— Capacity and density of embedded memories have

rapidly increased therefore they have higher probability of
faults. As a result, yield of system-on-a-chip designs with
embedded memories drops. Built-in self-repair is widely used to
improve manufacturing yield by replacing faulty memory cells
with redundant elements. Most approaches perform
reconfiguration on the row/column level. Block-based
redundancy architectures divide memory and redundancies
into blocks, performing reconfiguration on the block level and
offering more efficient usage of the redundant elements.
However, existing block-based approaches implement simple
redundancy analysis algorithms which lead to non optimal
repair rates. This paper proposes a new approach for block-
based redundancy architectures, improving repair rates of
previous approaches by utilizing a fast hybrid redundancy
algorithm with low area overhead and optimal repair rate.

Index Terms—embedded memory, yield, built-in self-repair,
built-in redundancy analysis

I. INTRODUCTION

HE density of modern system-on-a-chip (SoC) designs
is growing rapidly, so is the capacity and density of

memories embedded within them. As a consequence,
embedded memories have higher probability of faults and
their manufacturing yield drops. Since embedded memories
are occupying the majority of nowadays SoCs area (90 %
according to [1]), they are the main source of faults in SoCs
and they also dominate the overall SoC yield.

To improve reliability and manufacturing yield, the most
widely used approach is to add some redundancy to the
memories. Faulty memory cells are replaced by redundant
elements. In the case of SoC, memory testing and repair are
provided in the chip itself (built-in self-repair, BISR),
because it is more cost effective than using external test
equipment.

The BISR approach has three main functions. First,
memories are tested for various types of faults by built-in
self-test (BIST). Based on the fault information provided by
BIST, memories are analyzed by the redundancy analysis
(RA) algorithms which generate repair solutions for
memories. Repair solutions consist of information on which
redundant elements are to be addressed instead of every

Manuscript received March 19, 2012; revised April 15, 2012. This work

was supported in part by the Slovak Science Grant Agency (VEGA
1/1008/12).

Š. Krištofík and E. Gramatová are with the Faculty of Informatics and
Information Technologies, Institute of Computer Systems and Networks,
Slovak Technical University, Bratislava 842 16, Slovakia (e-mail:
kristofik@fiit.stuba.sk, gramatova@fiit.stuba.sk).

single faulty cell. Execution of RA algorithms is controlled
by built-in repair analysis (BIRA). Repair solutions provided
by BIRA are applied to memories by address reconfiguration
(AR) which ensures that respective redundant elements are
addressed instead of faulty memory cells.

SoC

BISR_start

BISR_done

BIST

BIRA

A

R

redundancy

memory

repair

solution

fault

info.

RA

done

repairable

Fig 1. Built-in self-repair architecture.

Fig. 1 shows the BISR architecture and its three main

blocks: BIST, BIRA and RA. BISR function is started by
activating BISR_start signal. When BISR function is
finished, BISR_done signal is activated. If memory can be
repaired, repairable signal is active. In case memory is un-
repairable, repairable signal is not active. This may be due
to insufficient number of redundant elements when fault
density is high or due to usage of RA algorithm with non-
optimal repair rate.

Fault information from BIST is processed in BIRA. This
information is provided in the form of fault locations in the
memory. Three main features of BIRA are area overhead,
repair rate and analysis speed [2]. Smaller area overhead
reduces chip production cost. Low repair rate impacts yield
negatively and speed affects the cost of repair. Repair rate
represents the ability of an RA algorithm to find a repair
solution for the memory and is defined as follows:

 good memories after BIRA

repair rate =
 # of total memories

The number of total memories includes both repairable
and un-repairable memories. Un-repairable memories can be
produced by various factors [2] and this may negatively
influence the repair rate of RA algorithms that are evaluated
using this value. Normalized repair rate was introduced in
[2] and is defined as follows:

 good memories after BIRA
 normalized repair rate =
 # of repairable memories

It is not dependent on the aforementioned factors, and
therefore is more appropriate to evaluate the RA algorithms.

Repair Analysis for Embedded Memories Using
Block-Based Redundancy Architecture

Štefan Krištofík, Elena Gramatová, Member, IAENG

T

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

Fig 3. Redundancy architectures.

Optimal repair rate is achieved when the normalized repair
rate is 100 % [2]. Ideal BIRA has optimal repair rate with
zero area overhead and analysis time. Finding a repair
solution is NP-complete problem [3] and various BIRA
approaches have been proposed that have tried to balance
these three main factors [2], [4] - [6]. Some general
observations on how to obtain optimal repair rate with BIRA
are listed in [2].

To be able to analyze fault information, BIRA needs to
store it in some way. Approaches that utilize fault bitmaps of
various sizes to store fault information have been shown to
have negative impact on repair rate since some fault
information is often omitted. Better repair rates were
achieved by using of storage registers and content-
addressable memories (CAM) [2], [5], [6].

Two important tasks of BIRA are fault collection (from
BIST) and redundancy analysis of redundant elements. Both
tasks are performed by RA algorithm. Based on the time of
execution of these two tasks, we distinguish three types of
RA algorithms [2]. Fig. 2 shows a comparison of RA
algorithms. Static RA algorithms perform RA after all fault
information has been collected and stored in fault bitmap.
This results in increased time it takes the algorithm to finish
(slower analysis speed) and high area overhead. Static RA
algorithms are neither suitable nor used in built-in solutions.
Dynamic RA algorithms perform RA in parallel with fault
collection. When BIST is finished, RA is also finished. Time
to finish is shorter and area overhead is lower than in static
RA algorithms, but repair rates are not optimal. Hybrid RA
algorithms perform RA concurrently with fault collection,
but after BIST finishes, RA continues for some time. Using
hybrid RA algorithms, optimal repair rates can be achieved
at the cost of slight increase in time and area overhead
compared do dynamic RA algorithms.

Fig 2. Classification of RA algorithms.

The types of redundant elements used in memories can be

classified into four types as shown in Fig. 3 on memories of
size 8x8. Faulty cells are denoted by the "X" symbol.
Redundant elements are represented as solid lines at the
sides of memories and repair solutions are denoted by strike-
through lines in memory arrays. 1-D redundancy
architectures incorporate only one type of redundant
elements (rows or columns) into memories. Fig. 3 (a) shows
an example where only redundant columns are used. While
this approach is easy to implement, RA algorithms are
simple and area overhead is low, it suffers from non-optimal
repair rates in larger memories. 2-D redundancy
architectures are the most widely used and most BIRA
approaches are based on it. Both redundant rows and
columns are added to the memory as shown in Fig. 3 (b).
With 2-D redundancy, optimal repair rates can be achieved
at the cost of enlarging area overhead needed to implement
more complex RA algorithms. Local and global block-based
redundancy architectures were proposed recently. They are
based on divided word line (DWL) and divided bit line
(DBL) architectures [5], [6]. Memory and redundancies are
divided into number of blocks (divided blocks) and
reconfiguration is performed on the block level instead of
row/column level as in 1-D and 2-D redundancy
architectures. For example, memories are divided into 4
blocks and redundancies are divided into 2 blocks, in Fig. 3
(c) and (d). If local blocks are used, blocks of redundancies
are restricted to be used only in their respective memory
blocks [5]. Global blocks can be used in any memory block
therefore providing better repair rates than local blocks [6].

Among various RA algorithms for 2-D redundancy
architectures, selected fail count comparison (SFCC) showed
the best performance in matters of repair rate, area overhead
and analysis speed [2]. SFCC is a hybrid RA algorithm that
builds a fault line-based searching tree that searches through
repair solution space faster than previous approaches based
on cell-based searching trees thus improving analysis speed.
Its fault storing structure is based on CAMs and it focuses on
reducing storage requirements by discarding some
overlapping fault addresses. Among a few known RA
algorithms for block-based architectures, modified essential
spare pivoting (MESP) showed the highest but not optimal
repair rate [6]. MESP is based on essential spare pivoting
(ESP) algorithm [3], which focuses on low area overhead
and fast analysis speed, but cannot guarantee optimal repair
rates in 2-D architecture. It is a dynamic RA algorithm that

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

builds a repair solutions based on identification of pivots
(first faults found in a row or column in divided blocks)
often omitting some fault information which leads to non-
optimal repair rates.

RA algorithms used in known block-based redundancy
architectures achieved non-optimal repair rates [5], [6]. In
this paper, we propose a block-based redundancy
architecture with global redundancy, which uses modified
SFCC (MSFCC) algorithm based on SFCC to improve
repair rates of previous block-based approaches. Table 1
clarifies the idea proposed in this paper.

II. PROPOSED BUILT-IN REPAIR ANALYSIS APPROACH

We use global block-based redundancy architecture as in
MESP and classification of memory faults based on SFCC.
Single fault does not share either row or column address
with any other fault in the divided memory block. Sparse
fault shares its row (column) address with at least one other
fault in the divided memory block, but not more than C (R)
faults, respectively. C and R denotes the number of available
redundant column and row blocks in the memory,
respectively. Must-repair fault shares its row (column)
address with more than C (R) faults in the divided memory
block.

TABLE I
COMPARISON OF RA ALGORITHMS

RA In 2-D architecture In block-based architecture

ESP low repair rate
low area overhead

-

MESP presumably
same as ESP

non-optimal repair rate
low area overhead

SFCC optimal repair rate
higher area overhead

-

MSFCC presumably
same as SFCC

proposed

Proposed approach is based on SFCC. It uses a group of
CAMs for storing fault information. When fault information
collection is finished, all faults are classified into three types.
Must-repair faults are repaired first using respective
available redundant elements. After must-repair faults have
been repaired, remaining redundant elements are used to
repair sparse faults by utilizing an auxiliary buffer structure.
After sparse faults have been repaired, remaining single
faults are repaired using remaining redundant elements
randomly.

Proposed fault collection structure is based on SFCC and
is shown in Fig. 4. Information on must-repair faults is
stored in MR/MC CAMs in Fig. 4 (a). Information on faults
that are found first in their respective row or column (i.e.
pivots or parents) is stored in PA CAMs in Fig. 4 (b).
Information on faults that share row or column address with
parent faults (named child faults) is stored in CH CAMs in
Fig. 4 (c). Maximum number of must-repair CAMs for rows
(MR) and columns (MC) is R and C, respectively. Maximum
number of parent CAMs is R + C. Maximum number of
child CAMs is R.(C – 1) + C.(R – 1). Fault collection is
finished when BIST is finished.

In Fig. 4, all enable flags are set to 1 if corresponding

CAM is used to store fault information, otherwise it is 0.
Block row and block col fields denote the divided block row

Fig 4. Fault collection structure of MSFCC.

and column address in which the fault is localized,
respectively. The idea of how these values are derived is
shown in Fig. 5 (b), which depicts the same type of memory
as shown in Fig. 3 (d). Must r/c addr tag identifies the row or
column address of the must-repair faults stored either in MR
or MC CAMs, respectively. Row addr and col addr fields
denote the row and column address of parent faults in
divided blocks, repsectively. Row repeat fail count and col
repeat fail count fields store the number of how many child
faults share the same row or column address with their
parent faults, respectively. PA pointer points to a respective
PA CAM in which the parent fault information is stored.
Addr descriptor is set to 0 if the child fault shares the
column address with its parent fault, otherwise it is 1. Row /
col addr field denotes the row address of child fault if add
descriptor is 0, otherwise it denotes the column address.

Proposed approach uses auxiliary buffer structure based
on sparse faulty line buffer [2] and is shown in Fig. 5 (a).
Maximum number of lines in auxiliary buffer (denoted as L)
is 2.(R + C) if R + C is even, otherwise 2.(R + C – 1) + 1. In
Fig. 5(a), enable flag, block row and block col fields have
the same purpose as in Fig. 4. R/C flag is set to 1 if the
sparse faults share the same column address, otherwise it is
0. R/C sparse addr field denotes the row or column address
of the sparse faults if R/C flag is 0 and 1, respectively. Line
fault count field stores the information on how many sparse
faults are sharing the same row or column address if R/C
flag is set to 0 and 1, respectively. The contents of a L-bit
intersection flag field are set by analyzing the intersected
faults (a fault, which shares both row and column address
with at least one other sparse fault). The number of buffer
line which stores the information about the row and column
of the sparse fault by is denoted by i and j, respectively.
Then the j-th bit of this field in i-th buffer line and the i-th
bit in j-th buffer line are both set to 1.

e
n
a
b
le
 f
la
g

R
/C
 f
la
g

lin
e
 f
a
u
lt
 c
o
u
n
t

R
/C
 s
p
a
rs
e
 a
d
d
r

b
lo
c
k
 r
o
w

b
lo
c
k
 c
o
l

Fig 5. Auxiliary buffer structure of MSFCC.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

Fig 6. Example of MSFCC algorithm.

Repair solution for sparse faults is derived by analyzing

the information in auxiliary buffer. MSFCC searches the
solution space by counting the number of faults covered
(NFC) for each line combination from auxiliary buffer. For a
combination of lines to be the correct repair condition, the
value of NFC has to satisfy the following condition [2]:

 NFC ≥ TF - (R + C - S) (1)

where TF is total number of faults remaining in the
memory after the must-repair faults have been repaired and
S is the number of lines in the selected combination.

III. EXAMPLE

We show the function of proposed RA algorithm on the
example in Fig. 6. Fig. 6 (a) depicts one of four divided
memory blocks of the same memory type and with same
number of redundant elements (R = 2, C = 4) as in Fig. 3 (d).
This block has row and column addresses both equal to 0
(Fig. 5 (b)). Other three blocks are fault free and are not
pictured. Total size of the memory in this example is
therefore 16x16, but all faults are located only in one of its
divided blocks.

The numbers of CAMs needed are as follows: 2x MR, 4x
MC, 6x PA and 10x CH CAM. Faults in the memory are
detected in the order as shown in Fig. 6 (b). After detection
of the last fault, the contents of must-repair, parent and some
child CAMs are shown in Fig. 3 (c), (d) and (e),
respectively. Column with address 1 (column 1) is repaired
first, as it contains three must-repair faults (#3, #5 and #6 in
Fig. 6 (b)), therefore the value of C changes from 4 to 3.

There now remains a total of 7 faults (4 sparse and 3
single). To repair sparse faults (#1, #8, #9 and #10),
auxiliary buffer structure is introduced. The contents of
auxiliary buffer structure after repairing of must-repair faults
are shown in Fig. 7. The number of buffer lines needed is
12, but only the first 4 are shown.

Fig 7. Example of usage of auxiliary buffer structure.

In Fig. 7, the first line stores the information about

column 4, the second line about row with address 1 (row 1)
and the third line about row 5. All of them does have the

same number of 2 sparse faults in them. Intersected faults
are #1 (row 5, column 4) and #8 (row 1, column 4).
Therefore the intersection flags are set to indicate the
intersection between first and third buffer line (for fault #1)
by setting the third bit in first buffer line and the first bit in
the third buffer line to 1 and likewise between the first and
the second line (for fault #8).

Fig 8. Determining repair solution in MSFCC.

Now, MSFCC counts the values of NFC for all possible

combinations of repair solutions for sparse faults. The
results are shown in Fig. 8.

In this example, the values of TF, R and C are 7, 2 and 3,
respectively. For a combination to be the correct repair
solution, the value of NFC, according to (1) has to be more
or equal to 3 for S = 1. In Fig. 8, no solutions for S = 1
satisfy this condition. For S = 2, the value of NFC has to be
more or equal to 4. In Fig. 8, only one solution satisfies this
condition, so this is selected by MSFCC as the correct repair
solution for this example. Sparse faults are repaired using 2
redundant row blocks to replace rows 1 and 5. The value of
R is changed from 2 to 0. The value of C remains 3.

Fig 9. Comparison of MSFCC and MESP algorithms.

After the must-repair and sparse faults have been repaired,

MSFCC repairs the remaining single faults (#2, #4 and #7)
by remaining three redundant column blocks. The final
repair solution by MSFCC is shown in Fig. 9 (a). For

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

comparison, the solution for this example found by the
MESP algorithm is shown in Fig. 9 (b). As shown in Fig. 9
(b), MESP is not able to find a repair solution for this
example as one fault is left un-repaired and marks this
memory as un-repairable. This shows the potential of
MSFCC to improve the repair rates of previous RA
algorithms used in block-based redundancy architectures.

IV. CONCLUSION

A new block-based redundancy architecture for built-in
self-repairing of embedded memories is proposed in this
paper. It is based on DWL and DBL techniques and can be
used in modern SOC designs to improve manufacturing
yield.

The proposed redundancy analysis approach is based on
modified SFCC algorithm (MSFCC) which is supposed to
have better repair rate for memories than that of previous
RA algorithms used in block-based redundancy
architectures. Area overhead of the proposed approach is
supposed to be higher than that of previous block-based
architectures since more complex RA algorithm is used.
However, further experiments on this are yet to be
performed.

REFERENCES

[1] International Technology Roadmap for Semiconductors (ITRS), Test
and Test Equipment, 2009, Available:
http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009
_Test.pdf

[2] W. Jeong, I. Kang, K. Jin, S. Kang, "A Fast Built-in Redundancy
Analysis for Memories With Optimal Repair Rate Using a Line-
Based Search Tree", IEEE Transactions on VLSI systems, vol. 17, no.
12, pp. 1665-1678, 2009.

[3] M. Fischerová, E. Gramatová, “Memory Testing and Self-Repair”. R.
Ubar, J. Raik, H. T. Vierhaus, “Design and Test Technology for
Dependable Systems-on-Chip”, Hershey, Pennsylvania: IGI Global,
578 p. ISBN 978-1-60960-212-3, pp. 155-174, 2010.

[4] O. Novák, E. Gramatová, R. Ubar, "Handbook of Testing Electronic
Systems", České vysoké učení technické v Praze, 395 p. ISBN 80-01-
03318-X, 2005.

[5] S.-K. Lu et al., "Efficient Built-In Redundancy Analysis for
Embedded Memories With 2-D Redundancy", IEEE Transactions on
VLSI systems, vol. 14, no. 1, pp. 34-42, 2006.

[6] S.-K. Lu, C.-L. Yang et al., "Efficient BISR Techniques for
Embedded Memories Considering Cluster Faults", IEEE Transactions
on VLSI systems, vol. 18, no. 2, pp. 184-193, 2009.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

