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Résumé—The purpose of this paper is to present
generalized cross talked functions implemented in a
Kron’s formalism. These coupling functions are called
chords and give a powerful extension to the method.
Applied in electromagnetic compatibility, it has pro-
ven its efficiency in time computation and accuracy.
The paper recalls the Kron’s formalism, the string
principles, and an application to cross talked between
lines.

Index Terms—EMC, Kron’s formalism, MKME,
tensorial analysis of networks.

I. Introduction

THE Kron’s method is often associated with Kron’s
works on electrical machines. His approach of the

tensorial analysis of networks was often source of mi-
sunderstandings. Rather than his proposals on electrical
method, diakoptic and the tensorial formalism has been
demonstrated for being efficient methods for complex
systems studies. Today, many works is made and the
situation is clear. In electromagnetic compatibility, it
gives the facility to theorize systems and to analyze
them theoretically. Basically, the method comes from the
idea of associating a natural space with the currents
(or similar flux) and a dual space for voltages. The
electrical power is the invariant and the system is studied
through a metric, which is a fundamental tensor for the
method. One particularity is the insertion of coupling
mechanism between edges or meshes. Starting form a
general presentation of these coupling implementation in
the tensorial analysis of networks (TAN), we apply the
principles to guided waves case, before to generalize it to
any kind of relation and the way to embed it.

II. Extended Kron’s formalism
It’s impossible to present widely the Kron’s approach

in one article. The objective here is to give major prin-
ciples of this formalism. Readers can report on [1] for
more information. We consider a set of possible currents
identified on a cellular topology.

A. The edge space
Each edge of the graph is a base vector of an edge

space. Writing ~ui the base vector of the ith edge, it is pos-
sible to project a current vector on this base : ~I = Ia~ua.
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In tensorial writing, the summation is forgetted each time
a identical index is repeated. This is the muet index
notation introduced by Einstein :

∑
a I

A~ua = IA~ua.
What must be clearly seen in this technique, is that the
vector component Ia represents the vector ~I. Once this
vectorial space defined, we can construct another one,
dual of the first. To each base vector ~ua we associate an
integral giving a 1-form e∗a :

Ψ∗a =
∫
l

~dl · ~ua (1)

The operation is normalized in order to find Ψ∗a~ub =
δab. Ence, developping voltages on the dual space that
are covector, writing : u∗ = uaΨ∗a we can define the
invariant of the tensorial formalism :

P = uaI
a (2)

As previously, ua point out implicitely the covector
u∗. Now, a metric can be defined using the tenso-
rial relations (and some advanced concepts that can’t
be developped in the context of this article. Readers
can have all the information going on the website
"http ://olivier.maurice.pagesperso-orange.fr/") based on
the materials properties. For a resistor for example,
we can affect to all the edges of the space a tensor
ρaa [S(a)]−1 which gives this property for all these ele-
ments. It can be nul somewhere and have any values
elsewhere. So, we can write in general :

uaΨ∗a = ρaa
1

S(a)

∫
l

~dl · (Ia~ua) (3)

This relation can be easily reduced using previous ones
to ua = ρaaS(a)−1

Ia. ρaaS(a)−1 is a generalized section
density resistivity.

B. The Kirchhoff’s edge
Adding sources of energy coming from outside, we can

write the classical relation between the sources ea for
all the edge of the space, the impedance coming from
the tensorial properties and the geometrical ones : for
resistors, zaa = ρaal(a) [S(a)]−1 and the currents Ia :

ea = Va + zaaI
a (4)

Va is the voltage accross all the edges.

C. The meshes space
Some properties can have meaning in the edge space.

That’s the robust side of the Kron’s formalism to be able
to work in various spaces level. Free magnetic energy
for example, can be defined rigorously only in the faces
space and its border : the meshes. We can connect the
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Figure 1. Simple example

edges in meshes using a connectivity : ia = Laβk
β . kβ are

the meshes currents. Changing the edge currents in the
Kirchhoff’s relation we obtain : ea = Va+zaaLaβkβ . Now
we can multiply both members by the transposed matrix
L a
α to obtain : L a

α ea = L a
α Va + L a

α zaaL
a
βk

β . We use
here classical rules of tensorial calculus. But the product
by L is an equivalent operation in cellular topology to a
rotationnal applied here on a gradient. So, L a

α Va = 0.
The two other products give the electromotive forces in
the meshes space (which can include magnetic induction
from Faraday’s law) and the impedance in the mesh
space. Finally, the whole problem is synthesized in the
tensorial equation :

eα = zαβk
β (5)

In this space we can easily add the inductance of each
mesh Sββ , and the mutual ones between meshes Sαβ .
The result stills valid due to the tensorial formalism used
backside. The invariant stills respected :

uaI
a = uαL

α
aL

a
αk

α = uαk
α = P (6)

Note that rigorously, k and I are the same object,
seen from two different reference frames. That’s only
for practical reasons that we change the symbol for the
current.

III. A simple example
We consider two circuits made each of one resistor and

one capacitor. The network is shown fig.1. We just need
to represent the graph of our topology. Each edge has
implicitely its own properties. Edges are oriented and the
meshes too, giving the connectivity L :

L =


1 0
1 0
0 1
0 1

 (7)

We can define the metric in the edge space, i.e. the im-
pedance fonctions of each edge (we meean by impedance
the generalized operator giving the relation between a
current in an edge and the voltage dopred across). Seeing
this metric, the nature of each edge appears clearly.
Edges are numbered from 1 to 4, the edge space dimen-
sion is 4. For example we describe the impedance tensor
(metric) as :

zab =


R1 0 0 0
0 1

C2p
0 0

0 0 1
C3p

0
0 0 0 R4

 (8)

p is the Laplace’s operator. For the moment, we don’t
have cross talked betweent he edges. It could be possible,
some functions may have been added to translate interac-
tions between them. Making the bilinear transformation
we obtain :

zµν = L a
µ zabL

b
ν =

[
R1 + 1

C2p
0

0 1
C3p

+R4

]
(9)

Now we can add some inductances values associated with
each circuit, coming from their loops :

zµν = L a
µ zabL

b
ν =

[
R1 + 1

C2p
+ L1p 0

0 1
C3p

+R4 + L2p

]
(10)

And finally, add the interaction through mutual induc-
tance m between the two loops (we don’t care here of
the exact formulation of these elements. Our study is
abstract and we theorize the problem) :

zµν = L a
µ zabL

b
ν =

[
R1 + 1

C2p
+ L1p −m12p

−m21p
1
C3p

+R4 + L2p

]
(11)

We see that the various steps in the problem construction
follow the natural minding of an engineer. That’s a very
interesting side of the approach. Another fact is that the
mesh space dimension is here only 2, two times lower
than the edge one.

IV. The simple and generalized interaction
process

When we have wanted to add the magnetic interac-
tion between the two loops in the previous example,
we add both m21 and m12 extra-diagonal components.
The mechanical effect of these elements is to create two
electromotive force (emf) on each mesh, coming from
opposite mesh current. If only loop one has a source of
energy, the system of equations obtain form the tensorial
one (5) is : {

e1 = z11k
1 + z12k

2

0 = z21k
1 + z22k

2 (12)

Writing e2→1 = z12k
2 and e1→2 = z21k

1, the system
becomes : {

e1 − e2→1 = z11k
1

e1→2 = z22k
2 (13)

But the components ex→y where x and y point out any
sources of fields anywhere, connected with currents and
can be considered as constructed by any physical process.
It means that the extradiagonal components m12p and
m21p can be replaced by functions of any complexity.
That’s the basic ideas of chords. In particular, the chords
can take in charge processes coming from the 3D space
of free fields. The general schematic is presented figure
2. To illustrate the mechanism, we apply the principle
to a simple magnetic moment coupling between the two
previous loops. A current in a cellular topology of dimen-
sion 1 (T 1) create through an operator of integration ∂o
a field source Atin a 2 dimension element T 2. This source
radiates on a spherical surface SE by a function φ and
reach another cellular topology, transported by a Green
function G in R4 domain. The inverse process is realized
in the reception circuit to create a local emf.
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Figure 2. Generalized free field process

Figure 3. Branin’s modelling for a line

V. Far field radiation between the two loops
The first loop is characterized by its mesh current k1

and its surface S(1). We can compute the far magnetic
field generated by the loop :

~Bθ = µ
πsinθ

rλ2 k1S(1)e− r
c p~uθ (14)

(θ is the hight). In the second loop, the emf created by
the magnetic field of the previous loop is :

e2 = −~S(2) · p ~Bθ (15)

Finally, the interaction through the 4D space is given by :

m21 = e2

k1 = −~S(2) · pµπsinθ
rλ2 S(1)e− r

c p~uθ (16)

m21 and its symetric m12 is added in the z tensor to take
into account this far field 4D space interaction.

VI. Affine interaction : the Branin’s
modelling in the Kron’s formalism

Branin’s modelling for lines is based on two equations :{
e1 = −

(
V2 − Zci3

)
e−

x
v p

e2 =
(
V1 + Zci

2) e− x
v p

(17)

Fig. 3 shows the configuration used to describe the
variables.

Using meshes 1 and 2 for both circuits at each ex-
tremity of the line, we can write this system under a
Kron’s formalism. Firstly we replace V1 and V2 by their
expressions :

V1 = E −R0i
1 V2 = RLi

4 (18)

So : {
−e1 = RLi

4e−
x
v p − Zci3e−

x
v p

e2 = Ee−
x
v p −R0i

1e−
x
v p + Zci

2e−
x
v p

(19)

Making the transformation to use the meshes space, we
obtain : {

E − e1 = (RL − Zc) e−
x
v pk2

Ee−
x
v p + e2 = (Zc −R0) e− x

v pk1 (20)

Thisl eads to define an affine interaction. Terms in im-
pedance give the interaction between the two meshes of
the extremities of the line :{

z12 = e1
k2 = (Zc −RL) e− x

v p

z21 = e2
k1 = (Zc −R0) e− x

v p
(21)

But it exists too an added emf coming from the source
E, delayed : [

E 0
]
→
[
E Ee−

x
v p
]

(22)

That’s why we call this kind of interaction affine one.

VII. Power Chopper
We present now an efficient application of Kron’s

method for "electric graphs" (for more details see ref.[2]) :
The model is made of two circuits : a first circuit
modelling the input of a chopper converter and a second
circuit modelling the output of the chopper. On entry,
we want to postponed the storage of energy coming from
the power supply inside the input capacitor and the
discharge in the phase where the top floor of the chopper
is opened and the bottom one is closed. On output we
want modelling the potential reported on the load (top
floor chopper switch closed and bottom one opened ).
Figure 4 presents the copper schematic where we can
see both switchers k1 and k2, power supply E, input
network : Re, Le, Ce and output network : Rs, Ls, Cs
and Rdr.

Figure 4. Chopper schematic

A. Equivalent circuit of our system
Figure 5 shows the equivalent circuit of our system

with the voltage node pair source and the controlled
current source. Our LRC modelling is separated into two
networks such that each one is controlled by the other.
The second network is powered by the voltage Vdc(t)
reported from the first network, and the load current
of the second network is is injected in the first network
depending on the command law.

Figure 5. Equivalent schematic for the chopper
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The second network includes a generator E2, given by :
E2 = V dc ∗ fsw.

B. Topology for the system
The visible elements in the graph given Figure 5 are

the topological following character :
– 4 physical nodes n1,..,n4 (→ N = 4)
– 5 branches b1,..,b5 (→ B = 5)
– 3 meshes m1,m2,m3 (→M = 3)
– 2 networks R1, R2 (→ R = 2)
– 2 nodes pair (→ P = 2)

Figure 6. Elements of the chosen topology

VIII. Conclusion
The generalized interaction terms under the tensorial

analysis of networks invented by Kron in 1939 allows to
take into account many kind of coupling. Various applica-
tions was made using these principles in information[2],
guided waves and cavities[3], power choppers[4], etc.
Each time it gives very efficient and optimized modelling
giving fast and accurate results. Next step could be to
apply the approach for numerical schematic. It allows to
mix quite easily integral, PEEC and GTD in a common
FEM for a numerical tool in Maxwell field computation.
But more than anything, the global technique gives a
very powerful tool to analyze theoretically the problems
of engineers, even in non linear cases[5].
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