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Abstract—Finding a minimum spanning tree of a graph is
a well known problem in graph theory with many practical
applications. We study serial variants of Prim’s and Kruskal’s
algorithm and present their parallelization targeting message
passing parallel machine with distributed memory. We consider
large graphs that can not fit into memory of one process.
Experimental results show that Prim’s algorithm is a good
choice for dense graphs while Kruskal’s algorithm is better for
sparse ones. Poor scalability of Prim’s algorithm comes from
its high communication cost while Kruskal’s algorithm showed
much better scaling to larger number of processes.

Index Terms—Minimum spanning tree, parallel algorithms,
message passing, distributed memory computer.

I. I NTRODUCTION

A MINIMUM spanning tree (MST) of a weighted graph
G = (V,E) is a subset ofE that forms a spanning tree

of G with minimum total weight. MST problem has many
applications in computer and communication network design,
as well as indirect applications in fields such as computer
vision and cluster analysis [1].

In this paper we implement two parallel algorithms for
finding MST of a graph, based on classical algorithms
of Prim [2] and Kruskal [3]. Algorithms target message
passing parallel machine with distributed memory. Primary
characteristic of this architecture is that the cost of inter-
process communication is high in comparison to cost of
computation. Our goal was to develop algorithms which
minimize communication, and to measure the impact of com-
munication on the performance of algorithms. Our primary
interest were graphs which have significantly larger number
of vertices than processors involved in computation. Since
graphs of this size cannot fit into the memory of a single
process, we use a partitioning scheme to divide the input
graph among processes. We consider both sparse and dense
graphs.

First algorithm is a parallelization of Prim’s serial algo-
rithm. Each process is assigned a subset of vertices and in
each step of computation, every process finds a candidate
minimum-weight edge connecting one of its vertices to MST.
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V. Lončar is with the Department of Mathematics and Informat-
ics, Faculty of Science, University of Novi Sad, Serbia, e-mail:
vladimir.loncar@dmi.uns.ac.rs.

S. Škrbíc (corresponding author) is with the Department of Mathematics
and Informatics, Faculty of Science, University of Novi Sad, Serbia, e-mail:
srdjan.skrbic@dmi.uns.ac.rs.
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The root process collects those candidates and selects one
with minimum weight which it adds to MST and broadcasts
result to other processes. This step is repeated until every
vertex is in MST.

Second algorithm is based on Kruskal’s approach. Pro-
cesses get a subset ofG in the same way as in first algorithm,
and then find local minimum spanning tree (or forest). Next,
processes merge their MST edges until only one process
remains, which holds edges that form MST ofG.

Implementations of these algorithms are done using C
programming language and MPI (Message Passing Interface)
and tested on a parallel cluster PARADOX using up to 256
cores and 256 GB of distributed memory.

Next section contains references to the most important
related papers. In section III we continue with the description
and analysis of algorithms - both serial and parallel versions,
and their implementation. In the last section we describe
experimental results, analyze them and draw our conclusions.

II. RELATED WORK

A LGORITHMS for MST problem have mostly been
based on one of three approaches, that of Boruvka

[4], Prim [2] and Kruskal [3], however, a number of new
algorithms has been developed. Gallager et al. presented an
algorithm where processor exists at each node of the graph
(thusn = p), useful in computer network design [5]. Katriel
and Sanders designed an algorithm exploiting cycle property
of a graph targeting dense graph, [6], while Ahrabian and
Nowzari-Dalini’s algorithm relies on depth first search of
the graph [7].

Due to its parallel nature, Boruvka’s algorithm (also
known as Sollin’s algorithm) has been the subject to most
research related to parallel MST algorithms. Examples of
algorithms based on Boruvka’s approach include Chung and
Condon [8], Wang and Gu [9] and Dehne and Götz [10].

Parallelization of Prim’s algorithm has been presented by
Deo and Yoo [11]. Their algorithm targets shared memory
computers. Improved version of Prim’s algorithm has been
presented by Gonina and Kale [12]. Their algorithm adds
multiple vertices per iteration, thus achieving significant
speedups. Another approach targeting shared memory com-
puters presented by Setia et al. [13] uses the cut property of
a graph to grow multiple trees in parallel. Hybrid approach,
combining both Boruvka’s and Prim’s approaches has been
developed by Bader and Cong [14].

Examples of parallel implementation of Kruskal’s algo-
rithm can be found in work of Jin and Baker [15], and Osipov
et al [16]. Osipov et al. proposes a modification to Kruskal’s
algorithm to avoid edges which certainly are not in a graph.
Their algorithm runs in near linear time if graph is not too
sparse.
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Bulk of the research into parallel MST algorithms has tar-
geted shared memory computers like PRAM, i.e. computers
where entire graph can fit into memory. Our algorithms target
distributed memory computers and use partitioning scheme to
divide the input graph evenly among processors. Because no
process contains info about partition of other processes, we
designed our algorithms to use predictable communication
patterns, and not depend on the properties of input graph.

III. T HE ALGORITHMS

L ET us assume that graphG = (V,E), with vertex
set V and edge setE is connected and undirected.

Without loss of generality, it can be assumed that each
weight is distinct, thusG is guaranteed to have only one
MST. This assumption simplifies implementation, otherwise
a numbering scheme can be applied to edges with same
weight, at the cost of additional implementation complexity.

Let n be the number of vertices,m the number of edges
(|V | = n, |E| = m), andp the number of processes involved
in computation of MST. Letw(v, u) denote weight of edge
connecting verticesv andu. Input graphG is represented as
n× n adjacency matrixA = (ai,j) defined as:

ai,j =

{

w(vi, vj) if (vi, vj) ∈ E

0 otherwise
(1)

A. Prim’s Algorithm

Prim’s algorithm starts from an arbitrary vertex and then
grows the MST by choosing a new vertex and adding it to
MST in each iteration. Vertex with an edge with lightest
weight incident on the vertices already in MST is added in
every iteration. The algorithm continues until all the vertices
have been added to the MST. This algorithm requiresO(n2)
time. Implementations of Prim’s algorithm commonly use
auxiliary arrayd of lengthn to store distances (weight) from
each vertex to MST. In every iteration a lightest weight edge
in d is added to MST andd is updated to reflect changes.

Parallelizing the main loop of Prim’s algorithm is difficult
[17], since after adding a vertex to MST lightest edges
incident on MST change. Only two steps can be parallelized:
selection of the minimum-weight edge connecting a vertex
not in MST to a vertex in MST, and updating arrayd after a
vertex is added to MST. Thus, parallelization can be achieved
in the following way:

1) Partition the input setV into p subsets, such that
each subset containsn/p consecutive vertices and their
edges, and assign each process a different subset. Each
process also contains part of arrayd for vertices in its
partition. LetVi be the subset assigned to processpi,
anddi part of arrayd which pi maintains. Partitioning
of adjacency matrix is illustrated in Fig. 1.

2) Every processpi finds minimum-weight edgeei (can-
didate) connecting MST with a vertex inVi.

3) Every processpi sends itsei edge to the root process
using all-to-one reduction.

4) From the received edges, the root process selects
one with a minimum weight (called global minimum-
weight edgeemin), adds it to MST and broadcasts it
to all other processes.

Fig. 1. Partitioning of adjacency matrix amongp processes

5) Processes mark vertices connected byemin as belong-
ing to MST and update their part of arrayd.

6) Repeat steps 2-5 until every vertex is in MST.

Finding a minimum-weight edge and updating ofdi during
each iteration costsO(n/p). Each step also adds a communi-
cation cost of all-to-one reduction and all-to-one broadcast.
These operations complete inO(log p). Combined, cost of
one iteration isO(n/p+ log p). Since there aren iterations,
total parallel time this algorithm runs in is:

Tp = O

(

n2

p

)

+O (n log p) (2)

Prim’s algorithm is better suited for dense graphs and
works best for complete graphs. This also applies to its
parallel formulation presented here. Ineffectiveness of the
algorithm on sparse graphs stems from the fact that Prim’s
algorithm runs inO(n2), regardless of the number of edges.
A well-known modification [18] of Prim’s algorithm is to use
binary heap data structure and adjacency list representation
of a graph to reduce the run time toO(m log n). Furthermore,
using Fibonacci heap asymptotic running time of Prim’s
algorithm can be improved toO(m + n log n). Since we
use adjacency matrix representation, investigating alternative
approaches for Prim’s algorithm was out of the scope of this
paper.

B. Kruskal’s Algorithm

Unlike Prim’s algorithm which grows a single tree,
Kruskal’s algorithm grows multiple trees in parallel. Algo-
rithm first creates a forestF , where each vertex in the graph
is a separate tree. Next step is to sort all edges inE based
on their weight. Algorithm then chooses minimum-weight
edgeemin (i.e. first edge in sorted set). Ifemin connects
two different trees inF , it is added to the forest and two
trees are combined into a single tree, otherwiseemin is
discarded. Algorithm loops until either all edges have been
selected, orF contains only one tree, which is the MST ofG.
This algorithm is commonly implemented using Union-Find
algorithm [19]. Find operation is used to determine which
tree a particular vertex is in, whileUnion operation is used
to merge two trees. Kruskal’s algorithm runs inO(m log n)
time, but can be made even more efficient by using more
sophisticated Union-Find data structure, which usesunion
by rankandpath compression[20]. If the edges are already
sorted, using improved Union-Find data structure Kruskal’s
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algorithm runs inO(mα(n)), whereα(n) is the inverse of
the Ackerman function.

Our parallel implementation of Kruskal’s algorithm uses
the same partitioning scheme of adjacency matrix as in
Prim’s approach and is thus bounded byO(n2) time to
find all edges in matrix. Having that in mind, our parallel
algorithm proceeds through the following steps:

1) Every processpi first sorts edges contained in its
partition Vi.

2) Every processpi finds a local minimum spanning tree
(or forest, MSF)Fi using edges in its partitionVi

applying the Kruskal’s algorithm.
3) Processes merge their local MST’s (or MSF’s). Merg-

ing is performed in the following manner. Leta andb
denote two processes which are to merge their local
trees (or forests), and letFa and Fb denote their
respective set of local MST edges. Processa sends
setFa to b, which forms a new local MST (or MSF)
from Fa ∪ Fb. After merging, processa is no longer
involved in computation and can terminate.

4) Merging continues until only one process remains. Its
MST is the end result.

Creating a new local MSF during merge step can be
performed in a number of different ways. Our approach is to
perform Kruskal’s algorithm again onFa∪Fb. Computing the
local MST takesO(n2/p). There is a total oflog p merging
stages, each costingO(n2 log p). During one merge step one
process transmits maximum ofO(n) edges for a total parallel
time of:

Tp = O(n2/p) +O(n2 log p) (3)

Based on speedup and efficiency metrics, it can be shown
that this parallel formulation is efficient forp = O(n/ log n),
same as the first algorithm.

C. Implementation

Described algorithms were implemented using ANSI C
and Message Passing Interface (MPI). Fixed communication
patterns in parallel formulation of the algorithms map di-
rectly to MPI operations. Complete source code can be found
in [21].

IV. EXPERIMENTAL RESULTS

I MPLEMENTATIONS of algorithms were tested on a
cluster of up to 32 computing nodes. Each computer in

the cluster had two Intel Xeon E5345 2.33 GHz quad-core
CPUs and 8 GB of memory, with Scientific Linux 6 operating
system installed. We used OpenMPI v1.6 implementation of
the MPI standard. The cluster nodes are connected to the
network with a throughput of 1 Gbit/s. Both implementations
were compiled using GCC 4.4 compiler. This cluster has
enabled testing algorithms with up to 256 processes as shown
in Table I.

We tested graphs with densities of 1%, 5%, 10%,
15% and 20% with number of vertices ranging from
10,000 to 100,000, and number of edges from 500,000 to
1,000,000,000. Distribution of edges in graphs was uniformly
random, and all edge weights were unique. Due to the high
memory requirements of large graphs, not every input graph
could be partitioned in a small number of cluster nodes, as
can be seen in Table I.

TABLE I
TESTING PARAMETERS

Processes Nodes Processes per node No. of vertices

4 4 1 10k - 50k

8 8 1 10k - 60k

16 16 1 10k - 80k

32 32 1 10k - 100k

64 32 2 10k - 100k

128 32 4 10k - 100k

256 32 8 10k - 100k

TABLE III
CPU TIME (IN SECONDS) FOR ALGORITHMS WITH INCREASING DENSITY

1% 5% 10% 15% 20%

Kruskal 0.607 2.603 5.342 8.164 10.663

Prim 30.189 30.007 30.382 30.518 30.589

A. Results

Due to the large amount of obtained test results, we only
present the most important ones here. Complete set of results
can be found in [21].

In the Table II we show the behavior of algorithms with
increasing number of processes on input graph of 50,000
vertices and density of 10%:

Results show poor scalability of Prim’s algorithm, due to
its high communication cost. Otherwise, computation phase
of Prim’s algorithm is faster than that of Kruskal’s. Due to
the usage of adjacency matrix graph representation, Prim’s
algorithm performs almost the same regardless of the density
of the input graph. This can be seen from the results of input
graph with 50,000 vertices and 32 processes with varying
density shown at Table III.

On the other hand, Kruskal’s algorithm shows degradation
of performance with increasing density. Results of Kruskal’s
algorithm show that majority of local computation time is
spent sorting the edges of input graph, which grows with
larger density. Increasing the number of processes makes
local partitions smaller and faster to process, thus allowing
this algorithm to achieve good scalability. If the edges of
input graph were already sorted, Kruskal’s algorithm would
be significantly faster than other MST algorithms.

B. Impact of communication overhead

Cost of communication is much greater than the cost of
computation, so it is important to analyse the time spent
in communication routines. During tests we measured the
time spent waiting for the completion of the communication
operations. In case of Prim’s algorithm, we measured the
time that the root process spends waiting for the completion
of MPI Reduce and MPIBcast operations. Communication
in Kruskal’s algorithm is measured as total time spent waiting
for messages received over MPIRecv operation in the last
active process (which will contain the MST after last iteration
of the merge operation). This gives us a good insight into the
duration of communication routines because the last active
process will have to wait the most.

The Table IV shows communication times of processing
input graph of 50,000 vertices with 10% density.
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TABLE II
CPU TIME (IN SECONDS) FOR ALGORITHMS WITH INCREASING NUMBER OF PROCESSES

4 8 16 32 64 128 256

Kruskal 38.468 19.94 10.608 5.342 2.958 1.796 1.382

Prim 16.703 15.479 25.201 30.382 30.824 32.661 39.737

TABLE IV
COMMUNICATION VERSUS COMPUTATION TIME (IN SECONDS)

Processes 4 8 16 32 64 128 256

Prim’s algorithm

Total 16.703 15.479 25.201 30.382 30.824 32.661 39.737

Communication 8.188 11.183 23.009 29.248 30.237 32.322 39.467

Kruskal’s algorithm

Total 38.468 19.94 10.608 5.342 2.958 1.796 1.382

Communication 0.171 0.356 0.371 0.288 0.317 0.253 0.256

4 8 16 32 64 128 256
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Total Communication

Fig. 2. Communication in Kruskal’s algorithm

When comparing communication time with a total com-
putation time it can be noted that the Prim’s algorithm
spends most of time in communication operations, and by
increasing number of processes almost all the running time
of the algorithm is spent on communication operations. A
bottleneck in Prim’s algorithm is the cost of MPIReduce
and MPI Bcast communication operations. These operations
require communication between all processes, and are much
more expensive than local computation within each pro-
cess, because all processes must wait until the operation
is completed, or until the data are transmitted over the
network. This prevents Prim’s algorithm from achieving
substantial speedup of running time with increasing number
of processes. Therefore, this algorithm is most efficient on
the fewest number of processes that the partitioned input
graph can fit.

On the other hand Kruskal algorithm spends much less
time in communication operations, but instead spends most
of the time in local computation. These differences are
illustrated in Figures 2 and 3. The diagrams show that com-
munication in Prim’s algorithm rises sharply with increasing
number of processes, while execution time slowly reduces.
In Kruskal’s algorithm, the situation is reversed.

C. Analysis of results

The experimental results confirmed some of the assump-
tions made during the development and analysis of al-
gorithms, but also made a couple of unexpected results.
Results of these experiments gave us directions for further
improvement of the described algorithms.
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Fig. 3. Communication in Prim’s algorithm

Prim’s algorithm has shown excellent performance in
computational part of the algorithm, but a surprisingly high
cost of communication operations spoils its final score.
Finding candidate edges for inclusion in MST can be further
improved by using techniques described in [18], but it will
not significantly improve the total time of the algorithm, as
communication routines will remain the same. Unfortunately,
the communication can not be further improved by changing
the algorithm. The only way to reduce the cost of communi-
cation is to use a cluster that has a better quality network, or
to rely on the semantics of the implementation of the MPI
operation MPIAllreduce.

Kruskal’s algorithm has shown good performance, espe-
cially for sparse graphs, while the performance degrades
with increasing density. It is important to note that many
real-world graphs have density much smaller than 1% (for
example, graph of roads as egdes and junctions as vertices
has a density much smaller than 1%). Also, this algorithm
showed much better scaling to larger number of processes
than Prim’s algorithm. Cost of communication in Kruskal’s
algorithm is much smaller than in Prim’s algorithm, but
the local computation is slower. This can be improved by
using more efficient Union-Find algorithms [20], or by im-
proving merging of local trees between processes. Kruskal’s
algorithm does not use a lot of slow messages like Prim’s
algorithm, but can send very large messages depending on
the number of processes and the size of the graph. This
can be improved by introducing techniques for compressing
messages, or changing the structure of the message.
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[21] S. Škrbíc. (2013) Scientific computing seminar. [Online]. Available:
http://www.is.pmf.uns.ac.rs/parallel/

Proceedings of the World Congress on Engineering 2013 Vol II, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013




