
 

 

 
Abstract— One primary goal of gene network analysis is to 

identify key regulatory components, or key drivers, of sub-
networks with respect to various biological contexts. Here we 
developed a general algorithm to identify key drivers in gene 
regulatory networks. The generalized key driver analysis 
(KDA) uncovers not only the well-known regulators for the 
expression quantitative trait locus (eQTL) hotspots but also 
many novel drivers underlying certain eQTL hotspots. This 
algorithm also identifies a number of key regulators for 
immune response involved in multiple common chronic 
diseases and the predicted drivers appear to be more 
important than the non-drivers genes to induce phenotypic 
changes when perturbed. 
 

Index Terms— causal networks, gene regulatory 
networks, key drivers 
 

I. INTRODUCTION 

nferring causal-reactive relationships between genes has 
been an important topic of systems biology. With the 
increasing availability of large scale genomic and genetic 

data, many gene regulatory networks have been 
reconstructed and tested [1-5]. A common practice for 
testing the prediction power of such networks involves the 
identification of key regulators for groups of functionally 
relevant genes, followed by biological validation of the 
effect of perturbing the putative regulators [6]. 

In a previous work of dissecting expression quantitative 
trait loci (eQTL) hot spots using Bayesian networks [6], a 
procedure called key driver analysis (KDA) was used to 
infer the causal regulators for these hot spots.  The 
procedure is briefly described: (1) for each eQTL hotspot 
region, cis eQTLs are selected as putative regulators; (2) 
downstream genes from the putative regulators are selected 
from the Bayesian network and intersected with the eQTL 
hotspot genes; (3) a statistically significant overlap identifies 
the putative regulator as a key driver of the hot spot.  When 
applied to a yeast regulatory network, KDA uncovered all 
previous known regulators within 8 of the 13 eQTL hotspots 
as well as new regulators, which were validated 
experimentally. However, there are several shortcomings 

with this implementation: (i) it limits to pre-selected 
candidate drivers (e.g. cis-eQTL genes), (ii) considering all 
the downstream nodes of a candidate driver for an 
enrichment test may not be optimal, and (iii) for complex 
networks searching the whole network is not necessary and 
computationally expensive. To resolve these problems with 
the original approach and to make it more broadly useful, 
here we formally defined the KDA algorithm.  

II. METHODS AND MATERIALS 

Key driver analysis (KDA) takes as input a set of genes 
(G) and a directed gene network N. The objective is to 
identify the key regulators for the gene sets with respect to 
the given network. Figure 1 shows the general procedure of 
KDA. KDA first generates a sub-network NG, defined as the 
set of nodes in N that are no more than h-layers away from 
the nodes in G. Two extreme cases are: (i) h=0, i.e., NG 
consists of only the links among the nodes from G; (ii) NG = 
N, i.e., take the whole network as NG. For a dense network 
N, we recommend case (i) in order to derive a simpler 
subnetwork for the subsequent analysis. Depending on 
whether the set of nodes in NG is a subset of G or not, we 
use either a static or dynamic neighborhood search. The 
dynamic neighborhood search (DNS) searches the h-layer 
neighborhood (h=1,..,H) for each gene in NG (HLNg,h) for 
the optimal h*, such that 

ES h*  max( ES h, g ) g  N g , h  {1 .. H }  

where ESh,g is the computed enrichment statistic for HLNg,h. 
The static neighborhood search (SNS), on the other hand, 
considers only a pre-specified h-layer neighborhood. 

In DNS, a node becomes a candidate driver if its HLN is 
significantly enriched for the nodes in G. Note that here the 
enrichment test is computed using the subnetwork NG as 
background. Candidate drivers without any parent node (i.e., 
root nodes in directed networks) are designated as global 
drivers and the rest are local drivers. We also promote as 
global drivers the nodes whose HLN is most significantly 
enriched for the signature by taking the whole network N as 
the background; this process is called HLN outlier detection. 
Specifically, we first test HLNs for the enrichment of the 
signature against the whole network. As the enrichment tests 
against different backgrounds don’t always agree with each 
other, this step basically rescues those master nodes missed 
by enrichment tests against a subnetwork. 

In SNS, candidate drivers are identified as follows. We 
first compute the size of the h-layer neighborhood (HLN) 
for each node. For the given network N, let μ be the sizes of 
HLNs and d be the out-degrees for all the nodes. The nodes 

with the sizes of their HLN greater than    ( )  are 
nominated as candidate drivers. The candidate drivers 
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without any parent node (i.e., root nodes) are nominated as 
global drivers. Similar to DNS, we also promote hub nodes 
as global drivers, i.e., the nodes with out-degrees above 

d  2 ( d ) are designated as global drivers.  

III. RESULTS 

We evaluate the performance of KDA on a yeast and an 
inflammation disease studies. In both studies predictive 
Bayesian networks were constructed. We applied KDA to 
the yeast causal network to predict causal regulators 
responsible for hot spots of gene expression activity in a 
segregating yeast population, and to human and mouse 
tissue networks to identify key regulators of immune 
response associated with common chronic diseases.  

A. Key drivers of eQTL Hot spots in Yeast 

In this application, we considered a genotypic and 
expression data from a yeast cross of 112 segregants 
constructed from the BY and RM strains of S. cerevisiae 
(referred to here as the BXR cross)  [7]. A previous genome-
wide genetic linkage analysis mapped expression 
quantitative trait loci (eQTL) for each of the 5,740 
expression traits represented on the microarray and 
identified 13 chromosomal regions harboring a large number 
of eQTL, i.e., eQTL hot spots [6]. While many studies have 
been conducted on this particular dataset to predict the 
drivers of the eQTL hot spots by inferring causal 
relationship between genes under the control of specific 
genetic loci [4-6, 8], a Bayesian network reconstructed by 
integrating genotypic, gene expression, protein-protein 
interaction and transcription factor binding site (TFBS) data 
remains the most predictive [6]. Therefore, we applied KDA 
on the most predictive Bayesian network. 

As the yeast Bayesian network is quite sparse (the 
average number of links per node is 2.2), KDA was based 
on DNS. We compared the results by KDA and the original 
implementation and tested how robust the results are with 

respect to the expansion (different layer neighborhoods (L1-
1 layer, L2-2 layers, L3-3 layers). As shown in Table 1, all 
the major regulators predicted by the original approach were 
also uncovered by KDA-L1, KDA-L2 and KDA-L3 except a 
few very weak regulators (whose neighborhoods are not 
highly enriched the genes linking to the corresponding 
eQTL hot spots) such AMN1, MATALPHA1 and TOP2. 
Notably, KDA uncovered many new putative trans-QTL 
regulators. For the hot spot 11, KDA identified three new 
regulators, RSM24, RSM25 and MRPL3 in addition to 

SAL1 which is the only one predicted by the original 
approach [6]. Figure 2 shows the subnetwork and the key 
drivers for the hot spot 11. 277 genes link to the hot spot 11 

Fig. 1. A Bayesian subnetwork and the key drivers for the eQTL 
hotspot 11 (Chr14, 503000bp) in a yeast cross. The large square 
nodes (SAL1, RSM24, RSM25, MRPL3) are the global drivers. 

TABLE I 

KEY DRIVERS IDENTIFIED BY THE ORIGINAL AND THE GENERALIZED KDA APPROACHES. FOR THE GENERALIZED KDA, WE

SHOW RESULTS FROM DIFFERENT LAYER NEIGHBORHOODS (L1: 1 LAYER, L2: 2 LAYERS, L3: 3 LAYERS). 
eQTL 

hotspot

Hotspot 

chr.

Hotspot base‐pair 

position

the original KDA 

(Zhu, Zhang et al. 

2008)

KDA L1 KDA L2 KDA L3

2 2 560000 TBS1, TOS1, ARA1, 

CSH1, SUP45, CNS1, 

AMN1

TBS1, ARA1, CSH1, 

SUP45, CNS1, 

PWP2

TBS1, TOS1, ARA1, 

CSH1, SUP45, CNS1, 

ENP2, NOP7

TBS1, TOS1, ARA1, 

CSH1, SUP45, CNS1, 

NMD3, RPF1

4 3 1.00E+05 LEU2, ILV6, NFS1, 

CIT2, MATALPHA1

LEU2, BAP2, OAC1 BAP2, LEU2, OAC1, 

RTG3

LEU2, BAP2, OAC1, 

RTG3

5 3 230000 MATALPHA1  

6 5 130000 URA3 URA3 URA3 URA3

7 8 130000 GPA1 GPA1 GPA1 GPA1

8 12 680000 HAP1 HAP1 HAP1 HAP1

9 12 107000 YRF1‐4, YRF1‐5, 

YLR464W

YRF1‐4 YRF1‐4 YRF1‐4

11 14 503000 SAL1, TOP2 SAL1, RSM24, 

RSM25

SAL1, RSM24, RSM25, 

MRPL3

SAL1, RSM24, RSM25, 

MRPL3

12 15 180000 PHM7 TFS1, PHM7, TKL2, 

YGR052W

PHM7, TFS1, YGR043C, 

HXT7, TKL2, GDB1, 

YGR052W

PHM7, TFS1, YGR043C, 

PIL1, TKL2, HXT7, 

YGR052W, GDB1

10 13 70000   GCV1 GCV1 GCV1

13 15 590000   ATP5 ATP20 ATP5, ATP20   
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and 242 of them were included in the subnetwork based on a 
3-layer expansion. While only 98 of the 242 genes are the 
downstream of SAL1 (p<7e-95), 142 are the downstream of 
RSM25 (p<1.42e-114). Figure 1 shows these four key 
drivers in the subnetwork. For the hot spot 12, KDA 
uncovered 6 new regulators in addition to PHM7 which is 
the only regulator identified by the original approach. 
Moreover, the neighborhoods of TFS1, YGR043C, TKL2 
and YGR052W are more significantly enriched for the 
genes links to the hot spot than that of PHM7. For example, 
63% (83) of the 132 3-LN nodes of TFS1 have eQTL on the 
hot spot 12 with which 340 genes are associated (p<3.5e-54) 
while 40 of the 46 2-LN nodes of PHM7 are linked to the 
same hot spot (p<2e-35). For the hotspots 10 and 13, no 
regulator was identified by the original KDA but the 
generalized KDA predicted GCV1 as a regulator for the hot 
spot 12, and ATP5 and ATP20 as regulators for the hot spot 
13. 5 of the 6 2-LN nodes of GCV1 have eQTL on the 
hotspot 10 which includes 41 eQTL genes (p<8.3e-10). 16 
of the 35 6-LN nodes of ATP20 have eQTL on the hotspot 
13 which includes 33 eQTL genes (p<4.3e-26). Table 1 also 
shows the robustness of the KDA with respect to the 
selection of the parameter of the expansion range (layer). 
 

B. Key drivers of Immune Response in Chronic 
Inflammation Diseases 

Previously, we built up a set of tissue-specific consensus 
Bayesian networks[9]  from several large scale genetic and 
genomic studies of complex diseases [10-13]. These 
consensus BNs and a common inflammatome gene signature 
identified from multiple inflammatory disease models were 
then used as input for KDA to identify 151 key drivers for 

inflammation response[9]. Figure 2 shows an inflammation 
regulatory network conserved in both human adipose and 
human liver and the predicted key drivers are highlighted.    

We utilized the mutant phenotype data from the Mouse 
Genome Informatics database (MGI) to validate the 
predicted key drivers. In the MGI database, 28.7% of the 
tested genes give rise to observable altered phenotypes   
when perturbed. Strikingly, 63.6% of the predicted key 
drivers have mutant phenotypes (Fisher Exact Test p = 2e-

12). However, only 39.2% of the non-driver genes have 
mutant phenotypes. Notably, 19 of the top 55 key drivers 
were tested in MGI and 73.7% (14) had mutant phenotypes 
(Figure 3). Thus, the key drivers identified through the 
proposed key driver analysis indeed appear to be more 
biologically important than the non-drivers. 

IV. CONCLUSION 

We developed a general key driver analysis algorithm to 
identify key regulators for a particular gene set of interest 
with respect to a given regulatory network. To deal with the 
complexity of gene regulatory networks, the algorithm 
incorporated a couple of mechanisms such dynamic and 
static neighborhood search and combination of distinct 
network connectivity measurements etc. The generalized 
KDA uncovers not only the well-known regulators for the 
expression quantitative trait locus (eQTL) hotspots but also 
many novel drivers underlying certain eQTL hotspots. We 
also applied this algorithm to uncover a number of 
regulators for immune response involved in multiple 
common chronic diseases and the predicted drivers appear 
to be more biologically important than the non-drivers 
genes. 
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