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Abstract—We propose a gate-passing detection method based
on WiFi signal strength and the accelerometers of user smart-
phones. Since doors divide such physical areas as rooms and
hallways, the WiFi environments tend to greatly vary. A gate
should exist when the points in the WiFi environments vary on a
large scale. We define such points as WiFi significant points and
propose a detection method based on a WiFi distance function
and estimated moving distance according to an accelerometer.
We evaluated our proposed method and found out that most
door passings can be detected. We also found that we can
estimate the existence of doors that have identical door passings
with a high degree of accuracy.

Index Terms—Door detection, Wireless-LAN, Accelerometer

I. INTRODUCTION

Gate passings, which refer to the entrances and exits to
a building or a room and going by a corridor, are crucial
information for indoor location-based services, especially
for monitoring user activities, recognizing user migration
pathways, and lifelogs.

Traditional gate-passing detection methods suffer from the
following problems. The most general gate-passing detection
method is IC card readers or RF tag readers attached to gates.
In such situations, users touch the readers with their cards.
The vision-based approach detects a gate [1]. Its door is
extracted from the images captured by the camera attached to
a robot or a user. The restrictions of camera locations burden
general users. Another method uses proximity sensors [2],
although general mobile terminals don’t have them.

In this paper, we propose a gate-passing detection method.
We assume that users have general smartphones. In our
method, we use WiFi signal information for gate detection
and estimate the moving distance by accelerometers with
which most smartphones are equipped. WiFi access points
(APs) must be placed in the environment, even though
many APs have already been placed in public buildings,
universities, and offices.

The following is the outline of our proposed method. Since
WiFi signal strength tends to be cut off or reduced by such
gates as doors, we assume gates in a location where the
WiFi environment greatly varies. To acquire the degree of
variation of WiFi environments, we introduce and compare
two kinds of moving distances that are based on WiFi and
accelerometers. If the WiFi-based distance deviate from the
accelerometer-based distance, we assume that the user is
passing a gate.
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Fig. 1. WiFi environment variation by passing a door

A. Proposed method

Many objects divide spaces, such as doors, elevators, and
walls. Such objects tend to cut off or weaken WiFi signal
strength. The degree of decay depends on the object’s
material and the physical relationship between the object
and the AP. However, in many cases, WiFi environments
separated by objects tend to be very different.

Figure 1 shows an example where a WiFi environment is
different because it is separated by a door. If the user passes
it, the WiFi environment changes. We assume that if the WiFi
environment greatly varies, the user is passing a gate such
as a door.

In this paper, we define a location where WiFi envi-
ronments are separated by significantly different locations
as a WiFi significant point. We assume a situation where
users have standard smartphones and walk around indoors.
Our method requires two kinds of moving distances. One
is accelerometer-based step estimation, and the other is the
distance based on the variation of WiFi signal strengths and
the signal propagation model. If the latter distance deviate
from the former distance, the method judges that the user
has passed a WiFi significant point.

One typical signal propagation model is the Seidel model
[3], which represents the relationship between the distance
to an AP and its received signal strength indication (RSSI).
With the model, we can estimate the distance to AP using
RSSI.

1) Fundamental algorithm for extracting WiFi significant
points: First, we formulate the WiFi significant point ex-
traction algorithm by defining a simple environment. It has
only one AP whose location is unknown. Users walk around
it freely, thus the trajectory is not necessarily linear. From
WiFi and accelerometer information, two kinds of distances
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Fig. 2. Possible variation of user trajectory when RSSI varies from -30 to
-40 dBm

are estimated.
One distance is user minimum moving distance dmin that

is estimated by the WiFi information. When RSSI rt1 at time
t1 changes to rt2 at time t2, the minimum moving distance is
represented as the following formula using WiFi propagation
model f :

dmin = |f(rt1) − f(rt2)|. (1)

Figure 2 shows several possible trajectory examples where
RSSI is changed from -30 to -40 dBm. When the user linearly
moves away from the AP, the lengths of the distance of
trajectories must be the shortest. The length is calculated as
|f(−30dBm) − f(−40dBm)|. If the user passed the WiFi
significant point, estimated minimum distance dmin should
be larger than the actual walking distance.

The other distance, which is maximum moving distance
dmax between times t1 and t2, is estimated by an ac-
celerometer. Walking steps can be extracted by capturing the
periodical local maximum and local minimum values of an
accelerometer. Each step ’s distance is estimated using the
user’s height and the local maximum and local minimum
values. Here, if the user is walking linearly, the distance is
the sum of each step’s distance. If the user isn ’t walking
linearly, the distance between the user’s positions at t1 and t2
must be shorter than the distance of the linear walking. The
sum of the walking distance must be the maximum distance.

Based on dmin and dmax, we estimate whether the user
passed the WiFi significant point during t1 and t2. The
algorithm is shown in Fig. 3. If dmax exceeds dmin, the
actual distance range can be estimated (Fig. 3, top). On
the other hand, if the WiFi environment varies significantly
during t1 and t2, dmin should be larger than the actual
walking distance, and dmin is probably larger than dmax

(Fig. 3, bottom). In such situations, we judge that value dmin

is not reasonable. Consequently, we consider that the user
passed the WiFi significant point during t1 to t2.

B. Extending our proposed method for real environments

We introduce the effect of the fluctuation of RSSI and
multiple WiFi information and extend our proposed method
for real environments. In the real world, WiFi signals in-
fluence multipath fading so that RSSI is not constant. Using
the average or median RSSI values that are observed multiple
times, the effect of fluctuation can be reduced. We imagine a
situation where users aren’t standing, so WiFi RSSI cannot

distancedmaxdmin0

Actual moving domain can be estimated

minmax dd ≥

distancedmax dmin0

Actual moving domain cannot be estimated 
�WiFi significant point

minmax dd <

dmin Minimum moving distance (based on WiFi)
dmax Maximum moving distance (based on accelerometer)

Fig. 3. Fundamental basis of WiFi significant point extraction

be observed multiple times. The effect of fluctuation cannot
be ignored. At the same time, we must consider the multiple
WiFi information transmitted by multiple APs. Recently,
since many APs have been placed in various buildings, we
can receive multiple AP signals at a number of locations.

1) Effect of fluctuation of RSSI: First, we introduce the
effect of the fluctuation of RSSI and reconstruct our above
scheme as a stochastic model. In this paper, we approximate
the fluctuation as a Gaussian distribution. Several researches
adopt Gaussian distribution to approximate RSSI fluctuation
[4], [5]. We also regard the level of fluctuation as constant. In
ideal environments, the distance can be calculated using func-
tion f and RSSI rμ, and the distance is expressed as f(rμ).
The fluctuation is expressed as a Gaussian whose average is
rμ and the standard deviation is rσ (Fig. 4 top). At the time,
in the ideal environment, when RSSI is observed, distance
rμ − rσ can be calculated as f(rμ)− f(rμ − rσ). Using the
value, we approximate the distance fluctuation to AP as a
Gaussian distribution where the average is wμ = f(rμ) and
the standard deviation is wσ = f(rμ) − f(rμ − rσ) (Fig. 4
bottom).

Minimum distance dmin, which we introduced above, is
expressed as a subtraction of Gaussian distributions. Conse-
quently, minimum distance dmin is expressed as a Gaussian
whose average is dmin μ = wμ1 − wμ2, and the standard
deviation is dmin σ =

√
wσ1 + wσ2.

In the previous section, the existence probability of WiFi
significant points is expressed as binary. On the other hand,
by introducing fluctuation, the likelihood based on two kinds
of distances dmax and dmin are expressed as cumulative
probability (5 shaded area). The likelihood is calculated as
Eq. 2. Here, erf(x) is an error function.

p =
1
2
(1 + erf(

dref − dμ√
2d2

σ

)) (2)

The top of Fig. 5 is an example where cumulative proba-
bility p is high. In short, the observed RSSI should probably
be fluctuated. On the other hand, if p is under threshold
pthreshold (Fig. 5, bottom), the observed RSSI is unlikely
even where the fluctuation is concerned. We assume that a
WiFi significant point is passed between observation times
t1, t2.
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Fig. 4. Conversion from RSSI fluctuation to distance fluctuation. (top:
Gaussian distribution of RSSI, bottom: Gaussian distribution of distance)
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Fig. 5. Distance likelihood

Based on the fluctuation, a weak RSSI value should not be
used to extract WiFi significant points. If the RSSI is weak,
the estimated distance to the AP is significantly different if
the RSSI value is fluctuated. For example, using the WiFi
propagation model from the evaluation section, the distance
where the RSSI is -80 dBm is 83 m, and the distance where
it is -81 dBm is 91 m. The variance is only 1 dBm, but the
difference of the estimated distances is 8 m. Therefore, we
use RSSI values that exceed threshold rthreshold for WiFi
significant point extraction.

2) Multiple APs’ WiFi information: Next, we introduce
multiple AP RSSI information. When the user passes a point
where the WiFi environment changes significantly, RSSIs

A B,C A
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Votes number
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Fig. 6. Voting and aggregation of WiFi significant points. Top: voting,
bottom: aggregation

don’t always change simultaneously due to the mobile de-
vice’s sensitivity and the device driver. Thus, the time instants
that WiFi significant points are ovserved don’t always match.

To reduce the problem, we aggregate WiFi significant
points that come from each AP’s RSSI as one WiFi sig-
nificant point.

Based on the previous section, the existence of WiFi sig-
nificant points from each RSSI is judged in each observation
interval between t and t + 1. The WiFi significant points
receive votes for their respective intervals. Then the interval
that receives the most votes in a window, whose size is w,
is deemed to be one WiFi significant point. Fig. 6 shows an
example of the voting and the aggregation of WiFi significant
points. The window size is 4. In the example, four zones are
voted as WiFi significant point at first (Fig. 6 top). Then,
according to the voting count and window size, they are
aggregated as two zones (Fig. 6 bottom). Finally, these two
zones are considered as WiFi significant point.

C. Identical gate-passing detection and passing direction
estimation

The aggregated WiFi significant points consist of multiple
WiFi significant points from multiple APs’ WiFi information.
We believe that identical gate-passing detection can be real-
ized using the pattern of the AP’s information. The pattern of
i-th WiFi significant point Si is expressed as a vector using
the number of votes and voted BSSIDs b.

Si = [bi,0, bi,1, ..., bi,n] (3)

The similarity of two arbitrary WiFi significant points Si,
Sj is calculated using Tanimoto coefficient T [6]:

T =
N(Si ∩ Sj)

N(Si) + N(Sj) − N(Si ∩ Sj)
. (4)

The Tanimoto coefficient is a similarity metric to evaluate
two sets. If they are completely identical, T is 1. They don’t
have a common element, and T is 0. Here, N(x) is the
number of elements in x.

When similarity T exceeds similarity threshold tthreshold,
WiFi significant points Si, Sj are estimated to be the same
point, and the user is passing the gate again.
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Furthermore, we estimated the passing direction using the
pattern of the variance of the RSSIs. For each common
BSSID b in Si and Sj , we checked the variance direction
to determine whether RSSI increased or decreased. If the
variance direction is the same, Nsame is incremented. If
the variance direction is different, Ndiff is incremented. If
Nsame is larger than Ndiff , the user passed the gate from
the same direction, and if Ndiff are larger than Nsame, the
user passed the gate from a different direction.

D. Correction of WiFi significant points using accelerome-
ters

As above, RSSIs don’t always change at the gate-passing
moment. Based on our pilot study, the difference of the RSSI
change timing and actual gate-passing timing is not zero, and
the difference may be about ten seconds.

Next we corrected the WiFi significant point with an
accelerometer. Generally, when a person passes a gate, the
step interval is long, and each step length is short, even
though the continuing time of the state is not so long. Based
on the heuristics, we developed simple gate-passing timing
estimation using an accelerometer. In our method, when the
accelerometer’s local maximum and minimal are lower than
threshold gthreshold and the continuing time is lower than
wthreshold, we assume the time zone is a gate passing. Here,
gthreshold means threshold of gate-acc and wthreshold means
threshold of gate-passing time.

If the time distance between a WiFi significant point and
a gate-passing time is under window size w, the time of
the WiFi significant point is corrected to the gate-passing
time. When multiple WiFi significant points exist within the
window, the nearest WiFi significant point is corrected as the
gate-passing time.

Note that our door passing estimation is not very robust.
Various situations probably exist where the estimation is
not correct. For example, when the environment is crowded,
people stand or walk slowly for a short time. The method
is probably inaccurate when a person slow down to passes a
corridor’s corner.

E. Restrictions

Our proposed method is very dependent on the physical
relationships between gates and APs. Thus, not all gate
passings can be detected by our method. If there are no
APs around a gate, gate passings cannot be detected. Even
if an AP exists around a gate, there are patterns of physical
relationships between the AP and the gate where our method
cannot extract gate passings. Fig. 7 shows two of the exam-
ples. In such a situation as the top of Fig. 7, the RSSIs
at points A and B are almost the same, so the gate passings
cannot be extracted by the RSSI variance. In such a situation
as the bottom of Fig. 7, the pattern of the RSSI variance of
passing rooms C and D is almost the same. Thus, using our
proposed identical gate-passing detection, the doors of the
two rooms should be detected as the identical door.

Additionally, there are several restrictions to apply our
proposed method. First, the gate must physically divide the
environment like doors and elevators. Second, the person
himself should open a gate to pass. If the door is already
open, the RSSI variance cannot be captured.

A B

C D

Fig. 7. Examples of situations where it is impossible to apply proposed
method
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Fig. 8. Door alignment. Top: 1F, bottom: 4F

II. EXPERIMENTS

We experimentally evaluated the accuracy of our method
using the gate-passing detection method and the identical
gate-passing estimation method.

A. Experimental environment

We conducted our experiment on the 1st and 4th floors
of the IB Information Buildings on Nagoya University. The
door alignment and types are shown in Figs. 8 and 9. There
were nine doors in the environment including one automatic
door. Doors A F are the entrance doors of the buildings, and
doors G I are inside the buildings.

Table I overviews the observation data. The subject is
one of the authors of this paper who used an iPhone3G
smartphone. He put it in his waist holder and walked around
the experimental environment. His walking speed was not
constant; standing and slow walking were included except
for door passings. Our proposed method is applicable when
users themselves open and close doors, so he opened and
closed doors when passing them.

B. Settings

We adopted LaMarca’s parameter of the Seidel model [7]
(Eq. 5).
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Fig. 9. Door types

TABLE I
OVERVIEW OF EXPERIMENTAL DATA

Sampling rate of WiFi observation 1 Hz
Sampling rate of accelerometer 100 Hz

Number of doors 9
Number of door passings A-F: 10 times, BG-I: 20 times
Total experimental time 5300 seconds

f(r) = −32 − 25log10r (5)

Step length s is calculated by the following formula [8].

s = 0.26 · height + (peakdiff − peakavg) · 5.0. (6)

Here, peakdiff is the difference between the value of
the local maximum and the local minimum in each step and
peakavg means the average value of peakdiff . The user’s
height is height. In this experiment, we set the values as
height = 1.80[m], peakavg = 1.11[g].

C. Results

1) Gate-passing detection method: Table III shows the
result of gate-passing detection. We define correct answers
to be when a detected gate passing is within 10 seconds of
the actual door passing. The precision of the gate-passing
detection was about 58%, and the recall was about 76%.
Consequently, our proposed method detected about half of
the door passings, but it doesn’t always detect them.

Figure 10 shows the accuracy of the gate-passing detection
for individual doors. The maximum accuracy is 100%, and
the minimum accuracy is 40.0%. Based on the results, the
accuracy of the gate-passing detection significantly differs by
door, even though gate-passing detection is possible when the
user passes the door many times.

Automatic doors provide minimum accuracy. When pass-
ing automatic doors, the step length around the door isn ’t
shorter than manual doors. This explains why the accuracy

TABLE II
EXPERIMENTAL PARAMETERS

Fluctuation of RSSI rσ 2.5 dBm
Threshold of RSSI rthreshold -60 dBm

Threshold of likelihood pthreshold 0.1 %
Threshold of similarity tthreshold 0.4

Window size w 10 sec
Threshold of gate-acc gthreshold 0.15 G

Threshold of gate-passing time wthreshold 2.0 sec

TABLE III
ACCURACY OF GATE-PASSING DETECTION

Gate-passing detected points 157
Actual gate passings 120

Successful gate-passing detections 92
Precision 59%

Recall 76%
F-measure 66%

of automatic door passing detection is low. Of course,
our method is influenced by the door’s material and the
distribution of APs. This is one reason that the accuracy of
gate-passing detection widely differs by door.

On the other hand, WiFi significant points were detected
except for around the gate. One reason is the existence
of WiFi hotspots caused by reflections and multipaths. For
example, corridor’s corner tends to be WiFi hotspot.

2) Identical gate-passing estimation: Using successfully
detected points (92 points), we evaluated the identical gate-
passing estimation. Precision, recall, and F-measure are
shown in Table IV. Fig. 11 shows the individual door results
of the identical gate estimation. The accuracy of door G is
obviously higher than the other doors. Door G is the thickest,
and one AP is placed near it. Such an ideal environment
enhances the accuracy of identical gate-passing estimation.

The number of errors relevant to doors H and I is 43, 19
of which were mistaken for other doors. Doors H and I are
located within 3 m of each other, so the pattern of their WiFi
environments is similar.

Consequently, the accuracy of identical gate-passing es-
timation is not as high as gate-passing detection, even
though we found doors on which the identical gate-passing
estimation method was successfully performed. Therefore,
we believe that our method is useful for restrictive situations.

For 245 pairs that were correctly estimated as the
same gate, we applied the gate-passing direction estimation
method, and the accuracy was 92%. Additionally, for door
G whose accuracy of identical gate-passing estimation was
high, the accuracy of the gate-passing direction estimation
was 100%. Consequently, the gate-passing direction estima-
tion method is generally useful.

III. RELATED WORKS

There are several researches on gate detection. Patel pro-
posed a person movement detection method based on air
pressure sensors attached to HVAC units[9]. The method cap-
tures door openings and closings, door-passing based on the
variation patterns of air pressure, although a case might exist
where air pressure sensors are difficult to attach to HVAC
units due to a building ’s structure. Moreover, if multiple
persons exist, this method cannot track an individual.
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Fig. 10. Gate-passing detection accuracy for individual doors

TABLE IV
ACCURACY OF IDENTICAL GATE-PASSING ESTIMATION

WiFi significant points related to door passings 92
Pair of WiFi significant points that

hline have identical gates 348 pairs
Pairs of WiFi significant points where

hline identical gate detection was correct 245 pairs
Pairs of WiFi significant points where

hline they should be estimated as same gate 508 pairs
Precision 70%

Recall 48%
F-measure 57%

GPS-based building entrance/exit detection methods have
also been proposed [10]. Generally, GPS signal strength
tends to be weak Inside buildings. In our method, with
training data that were observed beforehand, we generated
a detection model. Therefore, a labor cost problem exists for
prior observation. On the other hand, our proposed method
needs no preparation.

Hotta proposed a robust room-level location estimation
method [11]. When generating WiFi fingerprints, the distance
to the nearest door is input. Additionally, they introduced
a room transition probability, which is generated using the
distance to the nearest door; the probability will be high when
the location is near a certain door. Our method doesn’t just
detect actual door passings; it also enhances the transition
probability.

IV. CONCLUSION

We proposed a gate-passing detection method based on
WiFi significant points. Our method is based on the assump-
tion that WiFi environments, which are divided by gates,
tend to be very different. Only WiFi and accelerometer
information are used to detect gate passings. We conducted
several experiments and found that our proposed method
has the ability to detect more than half of the gate pass-
ings. Identical gate-passing detection has very low accuracy.
However, we found gates whose accuracy of identical gate-
passing methods is high.

One application of our proposed method is the cumula-
tive error correction of dead-reckoning [12]. By using the
identical gate-passing detection method, cumulative error can
be corrected based on the location passed before and after
location.
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