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Abstract—A dynamic authenticated data structure based on
k-ary trees is here proposed to improve the performance of
certificate revocation in vehicular ad-hoc networks. Such a
structure allows taking advantage of a duplex construction of
the new standard SHA-3. In particular, efficient algorithms for
search, insertion, deletion and restructuring the used k-ary trees
are presented. This is a work in progress, and in the near
future an implementation of a proof-of-concept prototype for
smartphones will be available.

Index Terms—k-ary tree, certificate revocation, VANET, hash
function.

I. INTRODUCTION

SECURITY is a crucial requirement in any communi-
cation network. In particular, being able to identify

and exclude misbehaving nodes from the network is ab-
solutely necessary to guarantee trustworthiness of network
services. One of the basic solutions to accomplish this task
in networks where communications are based on a Public
Key Infrastructure (PKI) is the use of certificate revocation.
Thus, a critical part in such networks is the management of
revoked certificates. Related to this issue, in the bibliography
we can find two different types of solutions. On the one
hand, a decentralized proposal enables revocation without
the intervention of any centralized infrastructure, based on
trusting the criteria of network nodes. On the other hand, a
centralized approach is based on the existence of a central
Certificate Authority (CA), which is the only entity respon-
sible for deciding on the validity of each node certificate,
and all nodes trust it. This second approach is usually based
on the distribution of the so-called Certificate Revocation
Lists (CRLs), which can be seen as blacklists of revoked
certificates.

Vehicular Ad-hoc NETworks (VANETs) are self-
organizing networks built up from moving vehicles that
communicate with each other mainly to prevent adverse
circumstances on the roads, but also to achieve a more
efficient traffic management. In particular, these networks
are considered an emerging research area of mobile
communications because they offer a wide variety of
possible applications, ranging from road safety and transport
efficiency, to commercial services, passenger comfort, and
infotainment delivery. Furthermore, VANETs can be seen as
an extension of mobile ad-hoc networks where there are not
only mobile nodes, there called On-Board Units (OBUs),
but also static nodes, which are the so-called Road-Side
Units (RSUs) [?].
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IEEE 1609 is a family of standards based on the ap-
proved standard IEEE 802.11p for vehicular communica-
tions. Within such a family, 1609.2 deals with the issues
related to security services for applications and management
messages. In particular, the IEEE 1609.2 standard defines the
use of PKIs, CAs and CRLs in VANETs, and implies that in
order to revoke a vehicle, a CRL has to be issued by the CA
to the RSUs, who are in charge of sending the information
to the OBUs. Thus, an efficient management of certificate
revocation is crucial for the robust and reliable operation of
VANETs.

Once VANETs are implemented in practice on a large
scale, their size will grow and the use of multiple temporary
certificates or pseudonyms will become necessary to protect
the privacy of the users. Thus, it is foreseeable that CRLs
will grow up to become very large. Moreover, in this context
it is also expected a phenomena known as implosion request,
consisting of several nodes who synchronously want to
download the CRL at the time of its updating, producing
serious congestion and overload of the network, what could
ultimately lead to a longer latency in the process of validating
a certificate.

This proposal uses a k-ary tree as an Authenticated Data
Structure (ADS), for the management of certificate revoca-
tion in VANETs. By using this ADS, the process of query
on the validity of certificates will be more efficient because
OBUs will send queries to RSUs, who will answer them
on behalf of the CA. In this way, at the same time the CA
will no longer be a bottleneck, and OBUs will not have to
download the entire CRL. In particular, the used perfect k-ary
trees are based on the application of a duplex construction of
the Secure Hash Algorithm SHA-3 that was recently chosen
as standard [?], because the combination of both structures
allows improving efficiency of updating and querying of
revoked certificates.

This paper is organized as follows. Section 2 focuses
on the necessary preliminaries while Section 3 provides a
brief explanation of our proposal based on the combination
of perfect k-ary trees and a duplex construction of the
Secure Hash Algorithm SHA-3. Finally, Section 4 discusses
conclusions and possible future research lines.

II. PRELIMINARIES

In order to improve efficiency of communication and
computation in the management of revoked public-key cer-
tificates in VANETs, some authors have proposed the use of
particular ADSs such as Merkle trees [?] and skip lists [?]
[?]. However, to the best of our knowledge no previous work
has described in detail the use of k-ary trees in general as
hash trees for revoked certificate management.

In general, a hash tree is a tree structure whose nodes
contain digests that can be used to verify larger pieces of
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data. The leaves in a hash tree are hashes of data blocks while
nodes further up in the tree are the hashes of their respective
children so that the root of the tree is the digest representing
the whole structure. Most implemented hash trees require
the use of a cryptographic hash function in order to prevent
collisions.

Most hash tree implementations are binary, but this work
proposes the use of a more general structure known as k-ary
tree, which is a rooted tree in which each node has no more
than k children. Specifically we propose the use of a perfect
k-ary tree in which all leaf nodes are at the same depth.
Thus, one of the major drawbacks of ordered tree structures,
which is the necessary restructuring when there are changes
in the tree, only occurs when the perfect k-ary tree requires
a new level of depth, because otherwise the nodes simply are
inserted from left to right to complete each level of depth. In
this way, our proposal is based on a dynamic tree-based data
structure that varies depending on the number of revoked
certificates.

The authenticity of the used hash tree structure is guaran-
teed thanks to the CA signature of the root. When an RSU
has to respond to an OBU about a query on a certificate,
it proceeds in the following way. If it finds the digest of
the certificate among the leaves of the tree because it is
a revoked certificate, then the RSU sends to the OBU the
route from the root to the corresponding leaf, along with all
the siblings of the nodes on this path. After checking all
the digests corresponding to the received path and the CA
signature of the root, the OBU gets convinced of the validity
of the evidence on the revoked certificate received from the
RSU.

III. OUR PROPOSAL

The proposed model is based on the following notation:
• h: Cryptographic hash function used to define the hash

tree.
• D (≥ 1): Depth of the hash tree.
• d (< D): Depth of an internal node in the hash tree.
• s: Number of revoked certificates.
• RCj (j = 1, 2, ..., s): Serial number of the j − th

Revoked Certificate.
• Nij (i = D − d and j = 0, 1...): Internal Node of the

hash tree obtained by hashing the concatenation of all
the digests contained in its children.

• N0j (j = 0, 1...): Leaf node of the hash tree containing
h(RCj), ordered according to revocation.

• k: Maximum number of children for each internal node
in the hash tree.

• f : Basic cryptographic hash function of SHA-3, called
Keccak.

• n: Bit size of the digest of h, which is here assumed to
be the lowest possible size of SHA-3 digest, 224.

• b: Bit size of the input to f , which is here assumed to
be one of the possible values of Keccak, 800.

• r: Bit size of input blocks after padding for h, which is
here assumed to be 352.

• c: Difference between b and r, which is here assumed
to be as in SHA-3, 2n, that is 448.

• l: Bit size of output blocks for building the digest of h,
which is here assumed to be lower than r.

Regarding the cryptographic hash function h used in the
hash tree (see Figure ??), our proposal is based on the use
of a new version of the Secure Hash Algorithm SHA-3. The
padding of the input is a minimum 10∗1 pattern that consists
of a 1 bit, zero or more 0 bits (maximum r− 1) and a final
1 bit, and the basic cryptographic hash function f called
Keccak [?] contains 24 rounds of a basic transformation that
involves 5 steps called theta, rho, pi, chi and iota, and the
input is represented by a 5 × 5 matrix of 64-bit lanes, but
our proposal is based on 32-bit lanes.

Another proposed variation of SHA-3 is the combination
of a duplex version of the sponge structure of SHA-3 [?]
and a hash k-ary tree. On the one hand, like the sponge
construction of SHA-3, our proposal based on a duplex
construction also uses Keccak as fixed-length transformation
f , the same padding rule based on the 10∗1 pattern, and data
bit rate r. On the other hand, unlike a sponge function, the
duplex construction output corresponding to an input string
might be obtained through the concatenation of the outputs
resulting from successive input blocks (see Figure ??). Thus,
the use of the duplex construction in our proposed hash
tree allows the insertion of a new revoked certificate as
new leaf of the tree by running a new iteration of the
duplex construction only on the new revoked certificate. In
particular, the RSU can take advantage of all the digests
corresponding to the sibling nodes of the new node, which
were computed in previous iterations, by simply discarding
the same minimum number of the last bits of each one of
those digests so that the total size of the resulting digest of
all the children remains the same, n.

While the maximum number of children of an internal
node has not been reached, the RSU has to store not only all
the digests of the tree structure but also the state resulting
from the application of Keccak hash function f in the last
iteration corresponding to such internal node, in order to use
it as input in a next iteration.

Periodic delete operations of certificates that are in the tree
and reach their expiration date, require rebuilding the part
of the tree involving the path from those nodes to the root.
Thus, in order to maximize our proposal, such tree rebuilding
is proposed to be linked to the moment when all the sibling
nodes of some internal node are expired because this avoids
unnecessary reductions of the system efficiency by having to
rebuild the tree very often.

The choice of adequate values for the parameters in our
proposal must be done carefully, taking into account the
relationships among them. In particular, the maximum bit-
length of the tree identifier of each revoked certificate, the
maximum tree size takes the following value:

n(1 + k + k2 + k3 + · · ·+ kD) =
n(kD+1 − 1)

k − 1

Thus, since this quantity is upperbounded by the size of
available memory in the RSU, and the maximum number of
leaves of the k-ary tree kD is lowerbounded by the number
of revoked certificates s, then both conditions can be used
to deduce the optimal value for k.

In our proposal, the used k-ary tree structure assigns a
unique identifier to each revoked certificate to represent it in
in order in each one of its leafs. Consequently, an auxiliary
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Fig. 1. Hash Tree Based on a Perfect 5-ary Tree

structure linking such identifiers with the corresponding
certificate serial number is also stored in the RSU. Thus,
when an OBU sends a request about a certificate, the RSU
first gets from such structure the identifier generated by the
k-ary tree structure using the certificate serial number, and
then proceeds with the tree search.

In order to allow the ordered insertion of revoked certifi-
cates, an auxiliary structure defined as a hash table is used as
a quick and efficient way to return the order value required
for the search in the tree. This structure is first generated
by the CA and then sent to all RSUs so that they can
properly perform searches of requested certificates through
the following algorithm:

Search Algorithm
//Param: rcSearch, Id-Tree of Leaf Node to Search
//Return: retPath, Path to Reconstruct Root Node
function searchTree (int rcSearch)
01: if (rcSearch > s)
02: return [][]; // Not found
03: endif
04: int depth=0;
05: Node retPath[][] = new Node[D][k];
06: retPath[depth++][0]=rNode;
07: int path = (

⌈
idNew
kD−1

⌉
− 1) mod k;

08: INode iNode=rNode.gNode(path);
09: retPath[depth++]=iNode.gMeAndBrothers();
10: for (int it = (D − 2); it > 0, it−−)
11: path = (

⌈
idNew
kit

⌉
− 1) mod k;

12: iNode=iNode.gNode(path);
13: retPath[depth++]=iNode.gMeAndBrothers();
14: endfor
15: int posLeaf=(rcSearch− 1) mod k;
16: LeafNode leaf = iNode.gLeaf(posLeaf );
17: retPath[depth]=leaf .gMeAndBrothers();
18: return retPath;
endfunction

The insertion operation in the tree implies having to update
the tree not as often as in other proposals (see Figure ??).
The number of internal nodes to be updated will depend on
whether the insertion implies a new level of the tree or not.
Thus, the number of updates that are necessary to insert a
leaf node without involving a new level of depth in the tree
is dlogkse.

On the other hand, if it is necessary to increase the depth
of the tree due to the insertion of a new node, our proposal
simply creates a new root node above so that the existent
tree becomes a subtree, and a new internal node is inserted
so that the new leaf node is at the same depth of the other
leaf nodes. This implies that the number of updates necessary
is defined by dlogkse+ 1.

The pseudocode of the insertion is shown below:

Insertion Algorithm
//Param: rcNew, Id-Tree of Leaf Node to Insert
function insertTree (int rcNew)
01: LeafNode nLeaf = new LeafNode(rcNew);
02: if (D > 0)
03: if (rcNew > kD) // New depth level
04: INode oldLevel[k]=rootNode.gNLevel();
05: rNode.sNLevel(new INode[k]);
06: rNode.gNode(0).sNLevel(oLevel);
07: D++;
08: endif
09: int path = (

⌈
rcNew
kD−1

⌉
− 1) mod k;

10: INode iNode=rNode.gNode(path);
11: for (int it = (D − 2); it > 0, it−−)
12: if (!iNode.existNLevel())
13: iNode.sNLevel(new INode[k]);
14: endif
15: path = (

⌈
rcNew
kit

⌉
− 1) mod k;

16: iNode=iNode.gNode(path);
17: endfor
18: if (!iNode.existLeavesNodes())
19: iNode.sLeaves(new LeafNode[k]);
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Fig. 2. Proposed Duplex Construction

20: endif
21: int posLeaf = (rcNew − 1) mod k;
22: iNode.sLeaf(posLeaf , nLeaf );
23: endif
24: else // First Leaf Node of the k-ary tree
25: rNode.sNLevel(new INode[k]);
26: Inode iNode = rNode.gNode(0);
27: iNode.sLeaves(new LeafNode[k]);
28: iNode.setLeaf(0, nLeaf );
29: D = 2;
30: endelse
31: // Recalculate All Affected Parent Nodes
32: Node upNode = nLeaf ;
33: while (!upNode.equals(rNode))
34: upNode=upNode.gParent();
35: upNode.update();
36: endwhile
endfunction

When necessary, leaf nodes are deleted from the network
if all its siblings have to be also deleted (see Figure ??).
In that case, the full subtree of all the siblings is deleted
according to the following algorithm:

Deletion Algorithm
//Param: rcDelete, Id-Tree of Leaf Node to Delete
function deleteTree (int rcDelete)
01: if (rcDelete > s)
02: return; // Not found
03: endif
04: path = (

⌈
rcNew
kD−1

⌉
− 1) mod k;

05: INode iNode=rNode.gNode(path);
06: for (int it = (D − 2); it > 0, it−−)
07: path = (

⌈
rcNew
kit

⌉
− 1) mod k;

08: iNode=iNode.gNode(path);
09: endfor
10: int posLeaf = (rcNew − 1) mod k;
11: LeafNode leaf = iNode.gLeaf(posLeaf );
12: leaf .sDisable();
13: if (iNode.allLeavesDisable())
14: // It really eliminates that branch
15: INode upNode = iNode.gParent();
16: upNode.removeNode(iNode);
17: recTreeFrom(upNode, rcDelete);
18: endif
endfunction

The computational cost of the delete operation is due to
the necessary reconstructions. A key aspect to consider is
that when the tree is restructured, the structure that maps the
certificate number with the identifier in the k-ary tree is also
updated. The number of necessary updates to be performed
in the internal nodes is:

(dlogkse − 1) +
k∑

j=1

(
⌈ s

kj

⌉
−
⌈
RCAnyLeafNodeRemove

kj

⌉
)

If removing a subtree leads to th deletion of a higher
subtree containing such subtree, the number of updates is
reduced by as many superior subtrees as eliminated. Besides,
if removing a subtree means reducing the depth of the tree,
the number of updates is also reduced by 1 single update,
corresponding to the root node.

Restructuring Algorithm
//Param: iNode, Branch Belonging to the rcDelete
// rcDelete, Id-Tree of Leaf Node to Delete
function recTreeFrom (Node iNode, int rcDelete)
01: int d=iNode.gDepth();
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Fig. 3. Example of Insertion

Fig. 4. Example of Deletion

02: int me = (
⌈
rcDelete
kD−d

⌉
);

03: int total = (
⌈

s
kD−d

⌉
);

04: Node nNode, auxNode;
05: for (int it = (me+ 1); it <= total; it++)
06: // Find Node in ’it’ position in ’d’ depth
07: nNode = findNode(it, d);
08: // Restructure intern branch of iNode
09: // using branchs of nNode, if it is necessary
10: moveBranch(iNode, nNode);
11: iNode.update();
12: // Upgrade Nodes Parents not change more
13: // from iNode
14: updateUpIfIsPossible(iNode, it);
15: iNode = nNode;
16: endfor
17: if (!iNode.hasNodes())
18: while(

(!iNode.gParent().equals(rNode)) &&
(iNode.gParent().nNodes() != 1)
)

19: auxNode = iNode;
20: iNode = iNode.gParent();
21: iNode.removeNode(auxNode);
22: endwhile

23: if (rNode.equals(iNode))
24: auxNode = iNode;
25: rNode = rNode.gNode(0);
26: iNode.delete();
27: rNode.update();
28: return;
29: endif
30: else
31: iNode.gParent().removeNode(idNode);
32: endelse
32: endif
33: else
34: moveBranch(iNode);
35: endelse
36: iNode.update();
37: while (!iNode.equals(rNode))
38: iNode = iNode.gParent();
39: iNode.update();
40: endwhile
endfunction

IV. CONCLUSIONS

One of the most important security issues in VANETs
is the problem of certificate revocation management, so an
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efficient verification of public-key certificates by OBUS is
crucial to ensure the safe operation of the network. However,
as VANETs grow, certificate revocation lists will also grow,
making it impossible their issuance. This paper proposes a
more efficient alternative to CRL distribution, which uses
an authenticated data structure based on dynamic k-ary
tree. In addition, the proposed mechanism applies the basic
hash function of the new SHA-3 standard called Keccak
combined with a duplex construction. Thanks to the structure
of the used k-ary tree, the duplex construction allows taking
advantage of the digests of previous revoked certificates for
calculating the hash of every new revoked certificate, so that
its inclusion in the tree can be performed by a single iteration
of the hash function. Both the analysis of optimal values for
the parameters, a comparison with previous proposals, and
the implementation of the proposal both on VANET devices
and on Android and iOS smartphones are part of work in
progress.
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