
 

 

Abstract—Multi-class classification models commonly hide 

more complex patterns from discrimination. Multi-class 

classification problems challenge many traditional classifiers to 

select a set of characterizing features. In fact, the authentication 

of features’ discrimination capability should be prior to 

proceeding feature selection. The enhancement of features’ 

discrimination power using fuzzy clustering analyses is 

proposed in this paper. In addition, a set of low-dependent 

features capable of collecting the enough data variability is 

selected for the completeness of classification tasks. 

Experimental results show that the classification models 

adopting our schemes can gain performance improvement. 

 
Index Terms—Feature selection, discrimination power, 

cluster analysis, multi-class classification 

 

I. INTRODUCTION 

he goal of classifier is to accurately predict the target 
class for each instance in the dataset. Generally, 

classifications are discrete and do not imply order. The 
simplest type of classification problem is binary and the target 
classes are alternative. Multiclass targets have more than two 
values and impose more intricate tasks on multiclass 
classification problems. In model building process, an 
inductive learning algorithm takes the responsibility of 
finding relationships between the values of the predictors and 
the values of the target. Different models exercise distinct 
techniques for the exploration of inherent but implicit 
relationships. The common goal is to discover the crucial 
classification factors or the serviceable decision rules. 

It is difficult for any single variable to distinguish multiple 
classes to their fullest. In general, one class is satisfied while 
other classes suffer as a result. Classification problems with 
multiple classes introduce perplexing interaction among 
features and such situation necessitates more efforts in data 
processing. Scaling up for high dimensional data and high 
speed streams have pushed the complexities of classification 
problems to the even higher boundary. Tremendous amount 
of ultra high dimensional data become ubiquitous and they 
impose heavy analytical and computational overheads on 
current data mining tasks. 

Features are typically expressed by categorical, nominal, or 
numerical values. The diversity of feature values in 
categorical and nominal types is simply limited. However, the 
diversity of numerical data is much greater due to their 
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continuity or multiplicity, especially when floating-point 
values are involved. Numerical features usually require 
preprocessing for data simplicity. The purpose of simplicity 
has two effects. Avoidance of mess information on 
computational process is the first. The second is to prevent 
outlier or noisy data from being involved in the analytical 
process. 

 Feature evaluation makes preparation for feature selection; 
nevertheless, precise feature evaluation greatly relies on the 
preprocessing quality of feature values. Adequate feature 
preprocessing can exhibit features’ discrimination powers and 
in turn lead to precise feature evaluation. A well 
preprocessing scheme can not only achieve data simplicity 
but also retain data characteristics including distribution, 
variation, and proximity. The enhancement of discrimination 
power for every feature is the first goal of this paper. However, 
combinations of individually good features do not necessarily 
lead to good classification performance. The second goal is to 
generate a compact subset of features which maximizes the 
discriminative effect for the target decision concept.  

This paper is organized as follows: next section the fuzzy 
c-means algorithm and PBMF-index are sketched. A new 
feature evaluation criterion using cluster analysis is presented 
in Section 3. A self-explanatory example is also provided in 
this section. The novel feature selection algorithm is 
explained in Section 4. The experimental and analytical 
results are presented in Section 5. Finally, concluding remarks 
are given in the last section. 

II. FUZZY C-MEANS AND PBMF-INDEX 

Fuzzy c-means (FCM) algorithm proposed by [1] adopts 
fuzzy logic which is similar to human reasoning. It allows one 
piece of data to belong to two or more clusters. Consider the 
dataset T={xi| Ni ≤≤1 }, where each sample contains 
p-dimensional vector p

i Rx ∈ . The algorithm aims to find a 
fuzzy partition of the domain into a set of K clusters {C1… 
CK}, where each cluster Cj is represented by its center’s 
coordinates’ vector p

j Rv ∈ . Each sample in the training set 
can be assigned to more than one cluster, according to a value 

iju , that defines the membership of the sample xi to the cluster 
Cj. 

FCM algorithm computes the centers’ coordinates by 
minimizing the objective function Jm defined as: 
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, where 1>m  is referred as the fuzziness parameter and used 
to adjust the effect of membership values. The norm 

ji vx −  is a distance measure from the sample xi to the 
cluster’s center vj. The membership of all samples to all 
clusters defines a partition matrix as: 
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The partition matrix is computed by the algorithm and the 
summation of 

iju in each row is equal to 1. The FCM 

algorithm computes interactively the cluster centers’ 
coordinates from a previous estimate of the partition matrix 
as:  
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The membership 
abu in the partition matrix is updated as: 
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The FCM algorithm is described as follows: 
1. Set 1>m , 2≥K  and initialize the cluster centers’ 

coordinates randomly, initialize the partition matrix as 
(4). 

2. For all clusters, update cluster centers’ coordinates as (3). 
3. For all samples and all clusters, update the partition 

matrix as (4). 
4. Stop when the norm of the overall difference in the 

partition matrix between the current and the previous 
iteration is smaller than a given threshold; otherwise go 
to step 2. 

 
The computation of cluster centers’ coordinates and the 

partition matrix depend on the specification of the number of 
clusters K. Two typical clustering questions are frequently 
addressed: (i) how many clusters are actually present in the 
data and (ii) how good is the clustering itself. The problem in 
finding an optimal number of clusters is called the cluster 
validity problem [2]. A number of clustering methods [9, 10] 
and validation indices [14, 15] have been proposed and 
successfully employed to solve this problem. The 
PBMF-index [10] is employed to verify the quality of FCM 
cluster analysis in this paper. 

The PBMF-index is defined as a product of three factors. 
The product with maximization ensures the partition has a 
small number of compact clusters with large separation 
between at least two clusters. Mathematically, the 
PBMF-index for K clusters is defined as follows: 
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The factor E is the sum of the distances of each sample to 
the geometric center v0. This factor does not depend on the 
number of clusters and is computed as: 
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The factor Jm is the sum of within cluster distances of K 
clusters, weighted by the corresponding membership value 
and the same as that in the FCM algorithm. DK represents the 
maximum separation of each pair of clusters: 
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The optimizing of PBMF-index relies on the fewer cluster 
number, the lower measure of Jm (i.e., the best clustering 
fuzzy partition), and the higher estimation of DK. The 
calculation procedure is explorative and described as follows: 

1. Compute the PBMF factor E as (6); 
2. 21 ←K ; 

3. 112 +← KK ; 

4. Run the FCM algorithm; 
5. Compute the PBMF factors Jm, 

1KD , and 
2KD  as (1) and 

(7); 
6. Compute the )( 1KVPBMF

and )( 2KVPBMF
 as (5); 

7. Stop when )( 1KVPBMF
 is greater than )( 2KVPBMF

and 

return )( 1KVPBMF
; otherwise 111 +← KK and go to step 

3. 
 

Although such explorative search could fall into the local 
optimization where only small cluster numbers are 
investigated, features classified into an adequate small 
number of categorization is sufficient and highly expected for 
the reason that over-fitting problems can be kept off. 

III. FEATURE EVALUATION 

Classification problems relying on a large set of continuous 
features tend to be overly categorized. To get rid of this 
situation, continuous features usually necessitate 
preprocessing. In machine learning, discretization refers to 
the process of converting or partitioning continuous features 
to discretized or nominal features. This can be useful when 
creating probability mass functions. Typically, data is 
discretized into partitions of P equal lengths/width (equal 
intervals) or P% of the total data (equal frequencies). Some 
machine learning algorithms [12, 16] are known to produce 
better models by discretizing continuous features. As far as 
classification problems are concerned, the enhancement of 
discrimination power is prior to all other factors. 

As proposed in [8], an enhanced entropy-based criterion 
called aggregation gain (AG) can precisely evaluate features 
by taking data variation into consideration, besides the 
information about data distribution. The AG criterion is 
particularly powerful when multiple classes are handled. In 
this paper, the continuous features preprocessed by FCM and 
validated by PBMF-index are evalauted by AG criterion. In 
order to present a convincing argument, a small dataset as an 
illustrative example is used to demonstrate how features’ 
discrimination powers are improved by fuzzy cluster analysis. 
The 25 instances are randomly extracted from the glass 

identification dataset [17] which was motivated by 
criminological investigation. As shown in Table I, the glass 
fragments left at the scene are analyzed by physical and 
chemical test and then some measured numeric data are 
preserved. 

 
TABLE I  

RAW DATA EXTRACTED FROM GLASS IDENTIFICATION DATASET 

No. 
Refractive 
index (a1) 

Magne- 
sium(a2) 

Alumi- 
num(a3) 

Silicon 
(a4) 

Potas- 
sium(a5) 

Calcium 
(a6) 

Barium 
(a7) 

Type 
(O) 

1 1.53125 10.73 0 2.1 69.81 0.58 13.3 2 
2 1.52739 11.02 0 0.75 73.08 0 14.96 2 
3 1.52151 11.03 1.71 1.56 73.44 0.58 11.62 4 
4 1.52725 13.8 3.15 0.66 70.57 0.08 11.64 2 
5 1.52320 13.72 3.72 0.51 71.75 0.09 10.06 1 
6 1.52171 11.56 1.88 1.56 72.86 0.47 11.41 4 
7 1.51653 11.95 0 1.19 75.18 2.7 8.93 6 
8 1.51643 12.16 3.52 1.35 72.89 0.57 8.53 3 
9 1.51743 12.2 3.25 1.16 73.55 0.62 8.9 2 
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10 1.53393 12.3 0 1 70.16 0.12 16.19 2 
11 1.51905 14 2.39 1.56 72.37 0 9.57 5 
12 1.51514 14.01 2.68 3.5 69.89 1.68 5.87 4 
13 1.52121 14.03 3.76 0.58 71.79 0.11 9.65 3 
14 1.51918 14.04 3.58 1.37 72.08 0.56 8.3 1 
15 1.51852 14.09 2.19 1.66 72.67 0 9.32 5 
16 1.51545 14.14 0 2.68 73.39 0.08 9.07 6 
17 1.51623 14.14 0 2.88 72.61 0.08 9.18 6 
18 1.51916 14.15 0 2.09 72.74 0 10.88 5 
19 1.51768 12.65 3.56 1.3 73.08 0.61 8.69 1 
20 1.52213 14.21 3.82 0.47 71.77 0.11 9.57 1 
21 1.52777 12.64 0 0.67 72.02 0.06 14.4 2 
22 1.52369 13.44 0 1.58 72.22 0.32 12.24 4 
23 1.51969 14.56 0 0.56 73.48 0 11.22 5 
24 1.52365 15.79 1.83 1.31 70.43 0.31 8.61 6 
25 1.51838 14.32 3.26 2.22 71.25 1.46 5.79 6 

 

Common processing of discretization simply partitions the 
underlying data domain of continuous feature into some equal 
divisions with a fixed interval length. As shown in Table II(a), 
all features are discretized into five grades and five grades are 
adopted because there are only six classes in the target 
classification variable. Taking feature a1 as an illustration, the 

mapped feature is denoted as '1a and regulated as follows: for 

]5,4,3,2,1[∈s , if sas 004.0515.1004.0511.1 1 +≤<+ , then 

sa ='1
. 

On the other hand, Table II(b) lists the raw features 
processed by FCM and validated by PBM-index. Distinct 
cluster numbers varying from 3 to 6 are generated for 
different features. The underlying data domain of every 
feature is divided into unequal parts with uneven interval 
length. Again, taking feature a1 as an illustration, cluster 
analysis categorizes data as follows: 

∈1a [1.515, 1.520], 1''1 =a  
∈1a (1.520, 1.525], 2''1 =a  
∈1a (1.525, 1.535], 3''1 =a  

 
TABLE II  

(A) SIMPLE-DISCRETIZATION              (B) CLUSTER-DISCRETIZATION 

 

Figure 1 shows the difference between simple and clustered 
discretization. The graduations are depicted on the horizontal 
axes. The vertical axes are used to prevent the data points 
from mixing. Obviously, simple discretization probably 

separates the similar data and categorizes the dissimilar data 
into the same cluster. FCM can take data proximity, sociality, 
and distribution into account. 

  
(a) Simple-discretization 

 

 

 (b) Cluster-discretization 

Fig. 1. Difference between simple- and cluster-discretizations. 
 
To verify the effect of cluster analysis upon the 

discrimination power, information gain (IG) and aggregation 
gain (AG) are applied for these seven features of this example. 
Regarding the IG part of Table III, the rank orders of simple- 
and cluster-discretizations are so different that features a4" 
and a3" own the highest rank and gain the most apparent IG 
improvement of all. The average IG for all ai" is better than 
that for all ai'. As to the AG part, the most characterizing 
features get the highest measures and are consistently 
classified by two discretization methods. In short, 
cluster-discretization cooperated with AG criterion explicitly 
approve the third and fourth features as the characterizing 
features. 

TABLE III  
MEASURES OF IG AND AG FOR SEVEN FEATURES 

Rank IG AG 
1 a1' 0.90 a4" 1.43 a3' 3.92 a3" 4.99 
2 a7' 0.85 a3" 1.34 a4' 3.16 a4" 4.58 
3 a3' 0.80 a1" 0.80 a6' 2.62 a5" 2.62 
4 a2' 0.72 a7" 0.69 a2' 2.53 a1" 2.51 
5 a4' 0.68 a2" 0.58 a1' 2.39 a6" 2.04 
6 a5' 0.59 a5" 0.56 a7' 2.06 a2" 1.93 
7 a6' 0.49 a6" 0.52 a5' 1.84 a7" 1.68 

Avg.  0.72  0.85  2.65  2.91 

IV. SELECTION ALGORITHM 

We investigate a two-stage selection process. Relevant and 
irrelevant features are distinguished using the AG-based 
criterion at the first stage. Features classified as irrelevant are 
removed from the classification tasks. Relevant features 
become the candidates for the selection of characterizing 
features. A categorization suggestion is based on the average 
of all AG’s. At the second stage, a learning model using 
multivariate analysis is schemed out to boost the joint 
discrimination power of earlier selected features. The effect 
of the features subsequently selected is based on their 
complementary discriminative effect but not their individual 
discrimination powers. 

For the completeness of learning model, we present below 
the algorithm of feature selection in detail. The notations used 
in the algorithm are first listed as follows: 

 
� A: The set contains all original features and the set size 

No. a1' a2' a3' a4' a5' a6' a7'  No. a1'' a2'' a3'' a4'' a5'' a6'' a7'' 
1 5 1 1 3 1 2 4  1 3 1 1 6 1 2 3 
2 4 1 1 1 4 1 5  2 3 1 1 2 4 1 3 
3 2 1 2 2 4 2 3  3 2 1 2 5 5 2 2 
4 4 4 4 1 1 1 3  4 3 3 5 2 1 1 2 
5 3 3 4 1 2 1 3  5 2 3 6 1 3 1 2 
6 2 1 2 2 3 1 3  6 2 1 2 5 4 2 2 
7 1 2 1 2 5 5 2  7 1 2 1 3 5 4 1 
8 1 2 4 2 3 2 2  8 1 2 6 4 4 2 1 
9 1 2 4 2 4 2 2  9 1 2 5 3 5 2 1 

10 5 2 1 1 1 1 5  10 3 2 1 3 1 1 3 
11 2 4 3 2 3 1 2  11 1 3 3 5 3 1 1 
12 1 4 3 5 1 4 1  12 1 3 4 7 1 3 1 
13 2 4 4 1 2 1 2  13 2 3 6 1 3 1 1 
14 2 4 4 2 3 2 2  14 1 3 6 4 3 2 1 
15 1 4 2 2 3 1 2  15 1 3 3 5 4 1 1 
16 1 4 1 4 4 1 2  16 1 3 1 7 5 1 1 
17 1 4 1 4 3 1 2  17 1 3 1 7 4 1 1 
18 2 4 1 3 3 1 3  18 1 3 1 6 4 1 2 
19 1 2 4 2 4 2 2  19 1 2 6 4 4 2 1 
20 2 4 5 1 2 1 2  20 2 3 6 1 3 1 1 
21 4 2 1 1 3 1 5  21 3 2 1 2 3 1 3 
22 3 3 1 2 3 1 4  22 2 3 1 5 3 2 2 
23 2 4 1 1 4 1 3  23 1 3 1 1 5 1 2 
24 3 5 2 2 1 1 2  24 2 4 2 4 1 2 1 
25 1 4 4 3 2 3 1  25 1 3 5 6 2 3 1 

a1'=1  a1'=2 a1'=3 a1'=4 a1'=5 

a1''=3 
 

a1''=1 
 

a1''=2 
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exceeds 2. 
� C: The set contains candidate features. 
� B: The initial feature basis for variability analysis. 

� 1λ (S): Apply principle component analysis (PCA) to S 

and extract the first eigenvalue from the corresponding 
correlation matrix. 

 
1. Sort all features in A according to their AGs in a 

decreasing order. If two or more features have the same 
evaluation, the feature with higher priority is ranked first. 
The feature with the highest AG is denoted as a1 and so 
forth. 

2. n← || A .    /* Designate a maximum selection quantity 

of features */ 
3. C← {a1, a2, a3, …, an}   /* The first n features in A are 

taken as candidates */ 
4. According to practical demand or users’ requirement, 

pick a small number of characterizing features from C 
and collect them into B. 

5. While nB < and φ≠− BC do 

6.       For every feature ia in C－B, calculate }){(1 iaB Uλ . 

7.             Select the next characterizing feature α  by 
})){(( max arg 1 i

BCa

aB
i

Uλ
−∈  

8.            }{αUBB ←  
9.       End For 
10. End While 
11. Return B. 
 

Step 2 designates a maximum selection number and this 
assignment ensure a sufficient amount when 10|| <A . This 

assignment is only a suggestion derived from statistical 
sampling and users can adjust it according to their practical 
requirements. A small number of features is selected and 
collected into set B as described at step 4. The selection of the 
next characterizing feature appeals to multivariate analysis as 
outlined from step 5 to 9. Step 5 monitors the whether the 
maximum selection number is reached and whether any 
feature remains for next selections. For any feature possibly 
serviceable to the classification task, step 6 calculates the first 
eigenvalues for the feature combination and step 7 selects the 
feature with the best variability contribution to set B. 

Again, taking the glass dataset as an illustration, our 
algorithm selects a１", a3", and a4" as the final charactering 
features. We measure the classification performance achieved 
by {a１", a3", a4"} in terms of accuracy rate when compared 
with that achieved by {a１', a3', a7' }. As shown in Table IV, for 
classifiers C4.5, NaïveBayes, and SVM, the accuracy 
improvements of 23%, 78%, and 60% are obtained in this 
example. 
 

TABLE IV  
ACCURACY COMPARISON (%) 

 {a１', a3', a7' } {a１", a3", a4"} 

C4.5 52.2 64.8 
Naïve Bayes 36.3 63.5 
SVM 40.2 63.2 

V. EXPERIMENTAL RESULTS AND ANALYSES 

A. Dataset Acquisition 

Five datasets used in this paper are glass, svmguide4, 
vehicle, segment, and satimage which are downloaded from 
[17], StatLib [3, 18], and Statlog [19]. Table V depicts the 
abstract of five datasets. The number of features varies from 9 
to 36 and the number of target classes varies from 4 to 7. For 
simplicity, five datasets are respectively denoted as DS1, DS2, 
DS3, DS4, and DS5. The data type of all features in the five 
datasets is either continuous or nominal. Continuous features 
in all datasets were preprocessed by FCM and the resulting 
cluster numbers were validated by PBMF-index. Nominal 
features with ordinal values were analyzed in a similar way. 
We note that a great number of nominal values could be 
simplified to a reduced number of categorizations. However, 
a small number of nominal values could retain their original 
values after applying cluster analysis. All decision models 
were implemented in C and Matlab programming languages 
executed on a workstation with an AMD Athlon dual core 
2.59 GHz processor. To verify our design, three classification 
methods including C4.5, NaiveBayes(NB), and SVM are 
selected from the 10 most influential algorithms [13] and used 
in the comparison experiments. 

 
 TABLE V 

ABSTRACT OF FIVE DATASETS 

Datasets 
glass 
(DS1) 

svmguide4 
(DS2) 

vehicle 
(DS3) 

segment 
(DS4) 

satimage 
(DS5) 

# of instances 214 612 946 2310 6455 
# of features 9 10 18 19 36 
# of classes 6 4 4 7 6 

 
According to our selection algorithm, the numbers of 

candidate features for the five datasets were respectively 
initialized as  9 ,  10 ,  18 ,  19 , and  36 ; i.e., 

n=3, 4, 5, 5, and 6. The dependencies among the features 
qualified by IG and AG were first investigated. That is, the 
first n features with the best IG and AG values are 
respectively extracted and the absolute correlation 
coefficients for every pair of them are calculated and 
averaged. As shown in Table VI, AG can classify the features 
with lower correlation degree than IG no matter simple- or 
cluster- discretization is applied. 

 
TABLE VI  

FEATURE DEPENDENCY 
 IG AG 

Datasets simple  clustered  simple  clustered 
DS1 0.324 0.379 0.449 0.489 
DS2 0.578 0.619 0.489 0.434 
DS3 0.827 0.845 0.820 0.845 
DS4 0.540 0.978 0.192 0.506 
DS5 0.807 0.803 0.821 0.632 

Average 0.615 0.725 0.554 0.581 

 
Three quantities are respectively formulated as 

 2|| An =− ,  || An = , and  |2| An =+  for the 

investigation of the impacts of different feature numbers on 
classification performance, where |A| is the feature number in 
a dataset. Table VII lists the number of features designated in 
these three situations for five datasets. Because DS1 has the 
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least feature number of all, the values of −
n and n are the 

same. 
 

TABLE VII 
FEATURE QUANTITIES ASSIGNED FOR FIVE DATASETS 

 −n  n  
+n  

DS1 3 3 5 
DS2 3 4 5 
DS3 3 5 6 
DS4 4 5 7 
DS5 5 6 9 

 

B. Accuracy Studies 

Let us look at the performance of classifiers built by the 
features selected in this paper. For convenience of 
explanation, let SD and CD respectively stand for the features 
selected via the preprocessing of simple-discretization and 
clustered-discretization. In addition, CDH indicates the 
features selected via the processing of cluster-discretization 
cooperated with the our selection algorithm. For SD and CD, 
the features with the better IGs and AGs are collected for the 
classification problems. CDH requires more computational 
costs in the collection of relevant features than SD and CD. 
Three strategies (SD, CD, and CDH) were applied to the five 

datasets (DS1~DS5) when three selection quantities ( −
n , n , 

and +
n ) were assigned. All experimental results in this study 

were assessed using 10-fold cross-validation. Figures 2~4 
respectively depict the classification accuracies using C4.5, 
NB, and SVM classifiers. For all cases, cluster analyses 
successfully improve the discrimination powers of selected 
features and in turn lead to the better accuracy with the 
improvement of 24% in average. We note that DS2, DS4, and 
DS5 have more significant improvement than others. DS2 and 
DS4 respectively improve 64% and 34% accuracies. 
Furthermore, CDH acquires a slight improvement of 2% in 
average when compared with CD. DS1 acquires the highest 
improvement of 6% of all. Since the amounts of features 
selected in these five datasets are not so great (<10) that the 
effect of our selection method is insignificant. However, C4.5 
and SVM using CDH still benefit by the effect of multivariate 
analysis. The performance of DS3 display that n  

outperforms −
n  and +

n  in cases of CD and CDH. The 
insufficient data quantity could be the cause of inconsistency 
happened to DS1. 

 
Fig. 2.  Accuracies of C4.5. 

 

 
Fig. 3.  Accuracies of NB. 

 

 
Fig. 4.  Accuracies of SVM. 

C. Performance of Different Selection Schemes 

To prove the usefulness of our CDH method, five 
well-known feature selection schemes including Information 

Gain (IG), Chi-Squared ( 2χ ), Correlation-based Feature 

Selection (CFS) [5], Relief-F [7], and Simba [6] are employed 
in the final comparison experiment. Rather than merely 
scoring individual features, CDH, CFS, ReliefF, and Simba 
methods analyze (or evaluate) the worth of subsets of features. 
The data complexity involved in the execution of CDH is 

)(NMO , where N is the initial number of features and M is 

the instance number in the original dataset. The CFS method 
requires O ))2)(( 2 MNN ×−  operations [4] for computing 

the pairwise feature correlation matrix. Hence, the 
computational cost of CDH is more economic than that of 
CFS. Relief-F's asymptotical complexity [11] is )(TNMO , 

where T is a user-defined parameter for the greater robustness 
of the algorithm concerning noise and controls the locality of 
the estimates. Relief-F has no mechanism for eliminating 
redundant features. Simba may also choose correlated 
features. The computational complexity of Simba is 
equivalent to Relief-F and their computational costs are 
higher than CDH. 

To have a fair comparison baseline, the number of 
candidate feature used in the training processes of C4.5, NB, 

and SVM are again initialized as  || An = , i.e., 3, 4, 5, 5, 

and 6, respectively. The 10-fold cross-validation 
classification accuracies (%) followed with ROCs for five 
classifiers are respectively listed from Tables VIII to X. The 
CDH method explicitly outperforms the IG and 2χ  methods 

in the aspects of classification accuracy and discrimination 
power. Approximately, 30% accuracy improvement and 10% 
discrimination improvement are obtained. When comparing 
with CFS, Relief-F, and Simba, the discrimination power 
derived from CDH outperforms that derived from CFS, 
Relief-F, and Simba. The average gain is about 10%. As to 
classification accuracy, although CDH does not significantly 
outperform CFS, Relief-F, and Simba, it is very competitive 
to them. 
 

TABLE VIII 
 PERFORMANCE OF FOUR FEATURE SELECTION SCHEMES FOR C4.5 

 IG 2χ  CFS Relief-F Simba CDH 

DS1 48.2[0.71] 51.8[0.72] 64.7[0.87] 71.8[0.76] 73.2[0.78] 70.6[0.84] 

DS2 43.6[0.69] 54.7[0.79] 70.2[0.78] 73.4[0.79] 73.8[0.81] 72.5[0.89] 

DS3 40.5[0.62] 42.2[0.69] 58.3[0.83] 65.2[0.72] 65.9[0.74] 64.3[0.83] 

DS4 71.4[0.92] 74.6[0.92] 93.2[0.92] 94.2[0.88] 94.8[0.89] 94.7[0.99] 

DS5 80.5[0.94] 82.3[0.93] 86.2[0.85] 95.7[0.89] 95.2[0.89] 95.8[0.99] 

Avg. 56.8[0.78] 61.1[0.81] 74.5[0.85] 80.1[0.81] 80.6[0.82] 79.6[0.91] 
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TABLE IX  
PERFORMANCE OF FOUR FEATURE SELECTION SCHEMES FOR NB 

 IG 2χ  CFS Relief-F Simba CDH 

DS1 39.8[0.62] 38.6[0.65] 61.2[0.79] 65.7[0.72] 65.9[0.76] 63.6[0.83] 

DS2 42.2[0.69] 53.4[0.81] 68.1[0.80] 65.4[0.72] 68.5[0.77] 66.5[0.88] 

DS3 38.7[0.66] 42.5[0.73] 56.8[0.81] 58.7[0.76] 60.6[0.79] 55.1[0.79] 

DS4 69.0[0.91] 74.8[0.90] 92.4[0.91] 88.6[0.87] 90.6[0.87] 88.2[0.99] 

DS5 74.3[0.94] 72.6[0.87] 77.9[0.85] 90.5[0.89] 92.6[0.89] 92.9[0.99] 

Avg. 52.8[0.77] 56.4[0.79] 71.3[0.83] 73.8[0.79] 75.6[0.82] 73.3[0.90] 

 
TABLE X 

PERFORMANCE OF FOUR FEATURE SELECTION SCHEMES FOR SVM 
 IG 2χ  CFS Relief-F Simba CDH 

DS1 52.6[0.81] 51.7[0.81] 68.4[0.88] 72.5[0.80] 72.2[0.77] 69.2[0.82] 

DS2 43.3[0.67] 54.9[0.83] 71.0[0.74] 72.6[0.79] 72.8[0.85] 70.9[0.90] 

DS3 46.2[0.71] 45.8[0.73] 63.7[0.82] 65.4[0.74] 62.7[0.76] 61.6[0.78] 

DS4 70.0[0.90] 68.8[0.87] 93.3[0.94] 90.8[0.86] 91.6[0.88] 93.5[0.98] 

DS5 80.2[0.93] 76.3[0.85] 87.6[0.86] 97.8[0.85] 96.3[0.89] 97.3[0.99] 

Avg. 58.5[0.81] 59.5[0.82] 76.8[0.85] 79.8[0.81] 79.1[0.83] 78.5[0.90] 
 

VI. CONCLUSIONS 

The main contributions of this paper are threefold. First, 
the enhancement of discrimination power facilitates the 
authentication of characterizing features. Cluster analyses 
using fuzzy c-means is proposed for this goal. Second, a novel 
feature selection algorithm capable of exploring the suitable 
subset of features with the necessary and sufficient 
information for classification is proposed. Variability 
analyses using PCA was taken to fulfill this goal. Third, our 
algorithm has the accessory effect that the selected features 
are lowly correlated with each others. Such effect prevents 
redundant classification handles from being repeatedly 
executed. 
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