
 

 
Abstract—The stiffness of the joint is the key part of the 

whole machine tool stiffness loop. This paper proposes a new 
orthotropic model and its parameter acquisition method to 
study the stiffness of the joint. First, the relationship between 
the stiffness and the parameters of the orthotropic model is 
established. Then, both static stiffness tests and modal tests are 
used to obtain the parameters of the model. A finite element 
model is used to verify the orthotropic model. The results show 
that the orthotropic model is efficient and precise which can 
express stiffness of different directions of machine tool joints. 
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I. INTRODUCTION 

igh stiffness is crucial for the high performance and fine 
cutting result in machine tool design. The stiffness of 

the whole machine tool is the combination of the stiffness of 
the structural components and the joints. Machine tool joints 
mainly include: fixed joints, rail-slider joints, bearings, 
tool-holder joints, etc. The stiffness of the joints is usually 
lower than the stiffness of the structural components. 
Therefore, the study of the joint stiffness (modeling and 
parameter acquisition) is of great importance for the analysis 
and design of the whole machine tool. Many factors may 
influence the stiffness of the joints, e.g. the roughness and 
lubrication of the contact surface, the temperature, the 
pressure, the material property, etc. These make the modeling 
of the joint stiffness a real difficult task. 
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According to the degrees-of-freedom studied, the 
complexities of the contact surface and the precision demand 
of the result, the joint models can be divided into three types: 
the point-to-point model, the point array model, and the 
face-to-face model. The point-to-point model uses one spring 
to represent the stiffness of the joint. Shin [1] used a 
point-to-point model to analyze the vibration performance of 
the lumped parameter model of a machine tool along one 
direction. This kind of model is often used for simple joints 
with few degrees-of-freedom. The point array model uses 
spring arrays to represent the stiffness of the joint. Furukawa 
[2] used the point array model for a rail-slider joint; Altintas 
[3], Ahmadi [4] and Chen [5] used the point array model for 
tool-holder systems. These joints own more than one contact 
surface and many degrees-of-freedom, so point arrays can 
represent the stiffness of the joints well. Chlebus [6] used 
some sticks to represent the normal and tangential stiffness of 
rail-slider joints. This model is another kind of point array 
model, whose stiffness is defined by setting the elastic 
modulus of the sticks. Lee [7] used a solid block, which is a 
face-to-face model, for the model of the joint. The stiffness of 
the joint is determined by the shape and elastic modulus of 
the block. The solid block model is an efficient model and 
suitable for the joint with flat contact surface. Of all the 
models mentioned above, the point-to-point method can only 
show stiffness of one direction, the point array method 
consumes much time for modeling, and the solid block model 
with isotropic elastic modulus is not convenient to set the 
stiffness of various directions. 

When the model of joint is established, many methods 
[8]-[11] such as the frequency response function method are 
used to obtain the parameters of the model. 

This paper proposes an orthotropic model to describe the 
stiffness of the joints. This model is one kind of solid block 
model with orthotropic material properties. The parameters 
and the stiffness of the model are studied. And the parameter 
acquisition method is developed. 

II. PROPERTIES OF ORTHOTROPIC MATERIAL 

According to the number of isolated elastic parameters, 
materials can be divided into different types, such as 
isotropic, orthotropic, anisotropic, etc. The isotropic material 
has 3 parameters, of which only 2 are isolated. When the 
geometry of the model is determined, the number of isolated 
stiffness is also only 2, which can’t meet the demand of 
practical use. Therefore, the orthotropic material which owns 
9 isolated parameters is needed. The generalized Hooker’s 
law for the orthotropic material is 
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(1) 

where Ex，Ey，Ez，μyx，μzx，μzy，Gxy，Gxz，Gyz are the 
parameters of the orthotropic material. 

III. ORTHOTROPIC MODEL 

The model with orthotropic material is called orthotropic 
model. The orthotropic model is a cube which can represent 3 
translational stiffness and 2 bending stiffness. The contact 
area of the cube is A, and the thickness is h, shown in Figs. 1 
and 2. In the text below, we represent the stiffness by the 
parameters of the model. 
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Fig. 1.  Translational stiffness 
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Fig. 2.  Bending stiffness 

(1) Stiffness along the y-axis. When the system is under 
the force Fy along the y-axis, the deformation of the joint is dy, 
shown in Fig. 3. Set the stiffness of the joint along the y-axis 
as ky, we know that 
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Fig. 3.  Deformation along the y-axis 

 
and we can get the stiffness 
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(2) Stiffness along the x- and z-axis. When the system is 
under the force Fx or Fz along the x- or y-axis, the 
deformation of the joint is dx or dz. Take the stiffness along 

the z-axis for example, shown in Fig. 4. Set the stiffness of 
the joint as kz, we know that 
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Fig. 4.  Deformation along the z-axis 

We can get the stiffness 
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Substitute x for z in (5), we can get 

xyx
x .

d

AGF
k

x h
   (6) 

(3) Bending stiffness around the x- and z-axis. Take the 
bending stiffness around the x-axis for example, shown in 
Fig. 5. When the system is under the torque Mx around the 
x-axis, the deformation of the joint can be expressed by the 
angle θx. Set the bending stiffness of the joint around the 
x-axis as kθx, we know that 
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Fig. 5.  Deformation around the x-axis 

We can obtain the stiffness 
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where Ix is the bending modulus of the contact area A around 
the x-axis. Substitute z for x, we can obtain 

y zz
θz

z

,
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k
h

   (9) 

where Iz is the bending modulus of the contact area A around 
the z-axis. 

The influence of the parameters to the stiffness of the joint 
can be shown in Table I. Parameters Ey, Gxy and Gzy can 
totally represent all the five stiffness of the joint. The other 
parameters will not affect the stiffness, so we set Ex=Ez=Ey，

Gxz =Gxy，μxy=μxz=μyz=0 for convenience. 
 

TABLE I 
 AFFECTION OF THE PARAMETERS TO THE STIFFNESS 

 Ey Gxy Gzy 

kx    

ky    

kz    

kθx    

kθz    
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IV. PARAMETER ACQUISITION OF ORTHOTROPIC MODEL 

The parameters of the orthotropic model can be obtained 
by static stiffness test or modal test. Two blocks attached by a 
kind of glue are shown in Fig. 6. The blocks are considered 
rigid, and the mass block 1 is fixed on the ground. For mass 
block 2, the mass is m, the inertia around the z-axis is Jz, and 
the inertia around the x-axis is Jx. The contact area is A, and 
the thickness is h. 

Mass 
block 1

Mass 
block 2

 
Fig. 6.  Test model of the orthotropic model 

(1) Static stiffness test. A force is subjected to the mass 
block 2 shown in Fig. 7. We can obtain the stiffness kx, ky and 
kz according to the forces and deformations. Then we can 
calculate the parameters according to (3), (5) and (6), which 
are shown below 
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Fig. 7.  Static stiffness tests for the parameters of the joint 

 
(2) Modal test. The vibration frequency of the mass block 

2 in Fig. 6 is related to the stiffness of the joint. So the 
parameters of the joint can be calculated by modal test. 

a) Vibration along the y-axis. We can calculate the 
vibration frequency along the y-axis by the stiffness ky 
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So Ey can be calculated as 
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b) Vibration along the x- and z-axis. Using the similar 
method of calculating Ey, we can obtain that 
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c)  Rotational vibration around the x- and z-axis. We can 
calculate the frequency of the vibration around the x-axis by 
kθx 

y xθx
θx

x x
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.
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So Ey can be represent by fθx 
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Substitute z for x, we obtain 
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y
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According to (14), (18), and (19), we can obtain Ey. 
According to (15) and (16), we can obtain Gzy and Gxy 
respectively. However, in practical test, the vibrations along 
the x-axis and around the z-axis always combine, and the 
vibrations along the z-axis and around the x-axis always 
combine, which are shown in Fig. 8. 

 

 
Fig. 8.  Deformation combinationduring the modal test 

 
For the subfigure (a) in Fig. 8, kθz and kx both contribute to 

the whole stiffness during the combination. The force arm of 
the stiffness kx is 0.7l, and the whole stiffness kxθz is the 
parallel connection of kθz and the torque caused by kx. Now 
the vibration frequency is 
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in which the stiffness 
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For the subfigure (b) in Fig. 8, we can also obtain 
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in which the stiffness 
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So far, we know that in modal test, we can obtain Ey by 

(14), and then we can obtain Gxy by (20) and (21), and we can 
obtain Gzy by (22) and (23). 

 

V. VERIFICATION OF ORTHOTROPIC MODEL 

The finite element model in Fig. 6 is used to verify the 
method. It is assumed that the vibration frequency and the 
deformation are already known in Table II. We then calculate 
the parameters of the model 

. 
 

TABLE II 
DEFORMATION AND THE VIBRATION FREQUENCY OF THE ORTHOTROPIC 

MODEL 

Type of the 
frequency 

Deformation of the joint 
Frequency 

(Hz) 

fxθz 

 

1834 

fy 

 

5030 

fzθx 

 

2020 

 
 
Set the density of the mass block as ρ=1000 kg/m3, and 

l=1m, A=1 m2, h=0.01 m, we can calculate that m=1000 kg, 
Jx=416.7 kg·m2, Jz=416.7 kg·m2. From Table II and (14), we 
can obtain Ey; then according to (20) and (21), we can obtain 
Gxy; then according to (22) and (23), we can obtain Gzy. The 
results are shown in Table III. 

 
 

TABLE III 
PARAMETERS OF THE MATERIAL 

Parameters Ey Gxy Gzy 
Value(GPa) 9.987 6.925 3.305 

 
Set the parameters into the finite element model, we can 

calculate the modes and the corresponding frequencies. The 
results are shown in Table IV. 

 

TABLE IV 
SIMULATION AND CALCULATION FREQUENCY OF THE MODEL FOR DIFFERENT 

MODE 

Frequency fxθz fy fzθx 
Simulation 
(Hz) 

1865 5026 2046 

Vibration 
mode 

 
Calculatio
n (Hz) 

1834 5030 2020 

Error 1.69% 0.08% 1.29% 
 
From Table IV, we can see that the orthotropic model can 

well represent the characteristics of the joint stiffness. The 
frequency errors are less than 2%. The parameters calculated 
are quite precise. 

VI. CONCLUSION 

A new orthotropic model with 9 material parameters is 
proposed to study the stiffness of the joint. First, the 
relationship between the stiffness and the parameters of the 
orthotropic model is established. Then, both static stiffness 
tests and modal tests are used to obtain the parameters of the 
model based on experiment data. A finite element model is 
used to verify the orthotropic model.  

The results show that the orthotropic model is an efficient 
and precise model which can express stiffness of different 
directions for machine tool joints. However, if the contact 
area is not square, the properties of the material may be hard 
to calculate. So this method is available only under special 
situations, such as the examples shown in this paper. 
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