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Abstract— The myriad of patterns in neuronal dynamics in 

response to the changes in the microenvironment is a result of 
comprehensive and collective information processing. 
Variability in spike patterns gives us an insight into the 
complexity of the neuronal dynamics. In the present work, the 
spiking and bursting patterns in response to time varying 
threshold and external input have been analyzed in simulated 
excitable space clamped FHN neuron. The effect of periodic, 
noisy periodic and mixed-mode forms of dynamic threshold on 
the response patterns of FHN neuron have been analyzed.  The 
probability density function of the number of spikes per burst 
has been found to depend on the dynamic threshold frequency 
and the associated fluctuation. Tonic spiking and quiescent 
phases of bursting under different situation result in firing 
complexities as shown in their respective bifurcation diagrams.  
 

Index Terms— Neuron model, Firing threshold, Bursting, 
Mixed-mode Oscillation, Bifurcation 
 

I. INTRODUCTION 

The process of neuronal communication is mediated by 
electrical pulses called spikes. Qualitative studies of various 
patterns of spiking reveals the nonlinear characteristics of 
slow-fast neuronal dynamics. Essentially spike dynamics 
provides vital information about neural activity [1, 2]. Tonic 
firing, tonic bursting, mixed mode (bursting and spiking) are 
typical responses exhibited by an excitable neuron [3].  
Tonic firing refers to a spike train which is observed as long 
as the input is on. Cortical neurons are reported to exhibit 
this firing behavior [4]. The response to a stimulus is termed 
as tonic bursting when the neuron periodically switches 
between resting state and repetitive firing state. In such a 
case, spikes are generated in clusters [4]. Chattering neurons 
in cat neocortex  are reported to exhibit tonic bursting 
phenomenon [5]. In mixed mode firing neuron generates a 
single burst followed by tonic spiking when the stimulation 
is  constant [6]. Neurons of mammalian neocortex are found 
to have mixed mode firing phenomena [7]. Spike generation  
depends on firing threshold and the stimulus intensity [8]. 
Usually, in neuronal model dynamics, firing threshold is 
considered to be a constant [9-11]. Recently [12], the 
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perception regarding the threshold of a neuron has been 
changing from being a constant to dynamic and history 
dependent. In addition, the nonlinear nature of the 
temporally variant threshold has been shown earlier to be 
important for the information processing in neurons  [13]. In 
the present work, we have discussed about the response 
dynamics of an excitable neuron with time varying firing 
threshold. Among various biophysical models of 
Computational Neuroscience, we have considered FitzHugh 
Nagumo (FHN) model for its simplicity. It is reported that, 
FHN neuron with constant threshold does not exhibit 
bursting without any noisy environment [14]. Recently, a 
FHN model with time varying threshold has been 
considered to model the dynamics of cortisol secretion from 
hypothalamus [15].  It is known that, dynamical threshold 
could be the possible mechanism underlying the nervous 
system mediated regulation of various physiological 
activities including hormone secretion, circadian rhythms 
etc. [16-18]. In this regard, following Faghih et al.[15], we 
have incorporated the idea of variable threshold in a space 
clamped FHN neuron in order to have bursting response. 
Response of the fast variable of FHN system is simulated 
for the cases of periodic and noisy periodic thresholds and 
considered for investigations of spike dynamics. We have 
further explored the inherent complexities of the system by 
constructing bifurcation diagrams.  

II.  FHN MODEL 

We have considered the following FHN model involving 
membrane potential (v) and recovery variable (w): 

 

)))(1(( Iwbvvva
dt

dv


       (1)
                 

cwv
dt

dw
                                                                             

                                                                                  
Where, I refers to externally applied stimulus, a and c are 
scaling parameters and b is firing threshold. With suitable 
choice of these parameters FHN neuron generates tonic 
firing exhibiting a limit cycle in the vw plane.  

III. TONIC FIRING AND BURSTING OF FHN NEURON WITH 

DYNAMIC THRESHOLDS  

In the present work, the parameters a, I and c are kept as 30, 
1, 0.25 respectively in order to maintain the excitable state 
of the neuron. Considering the role of neurons in the 
circadian rhythms of physiological activities, we have 
allowed firing threshold to vary in a periodic manner. In 
order to bring the essence of a real biological neuron, the 
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dynamic threshold has been further subjected to noisy 
environment. We map the threshold variable b to [0, 1] as in 
[19]: 

))(min(max(

))(min(

xabsx

xabsx
b




           (2) 

where, x = f(t) is the time varying threshold function and 
))(min( xabs is taken over the considered time scale.   

A. Periodic Threshold Function 

Here we let the threshold function  
 

 )sin(1()( ttf                 (3) 

which is varying between 0 and 1 in a periodic manner as 

shown in Fig 1 (inset) with ω=
7


 as a representative case. 

As a result of this periodic threshold, the neuron exhibits a 
tonic bursting (Fig 1). It may be observed that temporal 
variation of threshold as a described in (3) is inducing tonic 
bursting response. Fig 1 reveals the fact that the system 
repeatedly evokes spike clusters alternating with a quiescent 
phase. Moreover, it may be noted that, the number of spikes 
per burst remains constant, with four spikes in each burst in 
the representative case. Further, it has been observed that 
variation in the threshold frequency (ω) changes the 
frequency of spikes per burst (shown in Fig 2). Therefore it 
can be concluded that spike frequency per burst is a 
function of frequency, (ω), of the periodic threshold. 
 

B. Noisy periodic threshold function 

Physiological systems are not usually deterministic; they are 
apparently random in nature. Randomness in a system might 
arise due to some unknown external disturbances or due to 
the interaction with several other physiological systems. 
Therefore the spike dynamics of FHN neuron with a noisy 
periodic threshold has been considered. We have 
represented the noise by taking the X component of Lorenz 
attractor defined by the following set of equation[20]:  

)( XYX 


  

XZYXY 


                (4) 

XYZZ 


  
Such a model exhibits deterministic chaos for certain 
domain of variation of control parameters    ,

 
and   

[20].  
In order to model periodic noisy threshold variation, we 
have taken  
 

)()sin()( 321 tttf  
        (5) 

where, )(t corresponds to a randomly varying function of 

time, t. χ(t) is derived from the X-component of Lorenz 
system. For simulation we took, λ1 = λ2 = 0.3 and λ3 is 
varied. 
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Fig 1: Time course of membrane potential as a response to a 
periodically varying threshold (inset). 
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Fig 2:  Distribution of number of spikes per burst with the 
indicated threshold frequencies (ω) 
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Fig 3: Response of the system in response to a noisy 
periodic threshold (inset) 
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The threshold function for λ3=0.001 is observed to be 
periodic with a slight fluctuation (Fig 3 inset) and response 
is still exhibiting tonic bursting (Fig 3). It is also observed 
that, each burst is followed by a noisy quiescent phase. It 
seems that the neuron has a tendency to trigger spikes in the 
time interval between two successive bursts. Gradually 
increasing the fluctuation parameter λ3, the threshold 
function becomes more noisy (Figure not shown), tonic 
bursting response is gradually lost enabling the neuron to 
fire in an irregular manner. Characterization of this irregular 
firing pattern is further described in Fig 4 by plotting the 
probability distribution of number of spikes per burst P(n) 
[where n is the number of spikes within a burst] . These 
figures are displaying variation in n with respect to λ3. 
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Fig 4: Probability distribution of number of spikes per burst 
with λ3 = 0.01 
 
Moreover, keeping λ3 = 0.01 and varying ω, one can also 
observe the variation in the number of spikes per burst (n). 
We have also observed that, the intensity of fluctuation (λ3) 
and frequency (ω) of the periodic threshold can be fine 
tuned to have a variety of response functions. 

 
 
 
Fig 5: Probability distribution of number of spikes per burst 
with different threshold frequencies (ω) keeping   λ3 = 0.01 
 

The histogram in Fig 5 shows the variation of spikes per 

burst (n) subject to different threshold frequency ω (  ,  

and  as a representative case )  

 

IV. MIXED MODE THRESHOLD FUNCTION 

On varying threshold in a periodic manner for some time 
and then keeping it constant, a mixed mode firing can be 
obtained in FHN system as shown in Fig 6. The neuron 
subjected to a mixed mode threshold, bursts once followed 
by a resting state and then have tonic spiking as long as the 
input is on. We have therefore taken the following function 
f(t), for the mixed mode threshold, as: 
 

 





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             (5)     

It is observed that a mixed mode threshold of the above 
form results in a mixed mode response shown in (Fig  6). It 
may be noted that the limiting threshold value 0.2029 for t ≥ 
20 causes the tonic spikes as response.  It is found that the 
response in this case exhibits a single burst followed by 
tonic firing for suitable choice of   and  .                                            
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Fig 6: Mixed mode threshold (inset figure) and mixed mode 

firing for λ =0.01 and ω=  

V. BIFURCATION ANALYSIS 

It is shown in the previous section that a space clamped 
FHN neuron with time varying threshold exhibits a variety 
of firing states. The qualitative information of transition 
from one state to another provides quantitative 
information about the changes of certain physical 
characteristics regarding the transitions. An attempt has 
been made in this section to investigate the firing 
complexities by constructing bifurcation diagrams. The 
following map based model is considered for this purpose: 
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 is the integral step size which plays an important role 
[21] in reproducing the characteristics of a continuous 
neuron model. In this regard,   is considered as a 
bifurcation parameter in the following section. 
In the absence of a stimulus i.e., I=0, the bifurcation 
diagram with respect , is obtained (figure not shown) by 
considering the case of a periodic time varying threshold 

such that )(
7

sin5.05.0 
nbn  . In the present case, 

we do not find any values or domain where period 
doubling, pitchfork bifurcations etc., occurs as was found 
earlier by Gao (2004) for the FHN system with constant 
threshold.  
 
Considering the case of mixed-mode threshold variation, we 
observe a complex dynamics in the bifurcation pattern, of 
the membrane potential, v, as shown in Fig 7a, for I=0. A 
finite increase in the external stimulus, I, results in 
additional windows showing complex behavior in the 
bifurcation pattern of, v (Fig 7b). It is observed from Fig 7a 
that, the system has a fixed point for a suitable selection of 
 further increasing in  results in either quasi periodic or 
chaotic behavior which is illustrated by the phase plot of the 
FHN system with mixed-mode threshold variation (Fig 8a 
shown as a representative case). On the other hand the 
system is not showing any fixed point for the same range of 
 when I=1 (Fig 7b). However a transition from quasi-
periodic to chaotic state is exhibited which is further 
illustrated in the phase plots (Fig 8b as a representative 
case). 
 
Next we considered the effect of a noisy periodic external 
input with a constant stimulus/bias A0 as: 

)()](cos[ 210 tAnAAI n          (7) 

where )(t is the X-component of Lorenz attractor with 

 = 32. Fig 9 shows the bifurcation diagram for the 
membrane potential, v, obtained in the presence of constant 
stimulus/bias and noise. The effect of noise, howsoever 
small, is observed since the window shown in Fig 7b, after 
 =0.7 is almost invisible in Fig 9. Therefore neuronal 
dynamics tends to become more complex and needs further 
investigation for characterization.  
 
In our simulation, we further studied the effect of low 
amplitude periodic external stimulus on the system 
dynamics. Fig 10 shows the bifurcation pattern for v in the 
present case. Comparing the bifurcation pattern of, v, as 
shown in Fig 10 with Fig 7, we find significant changes in 
the neuronal dynamics as induced by the low amplitude 
external periodic stimulus.  
 
The effect of deterministic noise in the foregoing system is 
presented in Fig 11. It is observed that even weak noise 
further complicates the dynamics of the FHN system. 
 
 

 
Fig 7a:  Bifurcation diagram of membrane potential (v) with 
respect to the time step of integration (δ) for I=0. 
 

 
 
Fig 7b:  Bifurcation diagram of membrane potential (v) with 
respect to the time step of integration (δ) for I=1 
 
 
 
 
 

-1 -0.5 0 0.5 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Membrane Potential

R
e

c
o

v
e

ry
 V

a
ri

a
b

le

=0.68

 
 
 
 
 
 

(a) 

(b) 

(a) 

Proceedings of the World Congress on Engineering 2013 Vol I, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



 

-1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

Membrane Potential

R
e

c
o

v
e

ry
 V

a
ri

a
b

le

=0.71

 
Fig 8: Phase plot of FHN system for mixed-mode threshold 
variation showing (a) quasi-periodic for I=0 and (b) chaotic 
behavior for I=1 
 

 
Fig 9: Bifurcation diagram of response (v) for A0=1, A1=0, 
A2=0.0005. 
 

 
Fig 10: Bifurcation diagram for I=0 of the response (v) for 
A0=0, A1=0.001,A2=0. 
 

 
Fig 11: Bifurcation diagram of the response (v) for A0=1, 
A1=0.001, A2=0.0005. 
 

VI. CONCLUSION 

FHN model with time varying parameters has exhibited 
various complex firing behavior of single neuron. The 
response of a FHN neuron with time varying threshold 
stimulated by a constant external input current is discussed 
in the first part of the analysis. Different functions of time 
are considered as dynamic threshold functions and the 
response in each case is found to be different from the 
response obtained for another choice of threshold function. 
Coupling of neuronal system with other physiological 
systems may be mentioned as a reason for varying threshold 
with time. It has been observed that the response 
corresponding to periodic, noisy periodic and mixed mode 
threshold exhibit tonic bursting characteristics for a suitable 
choice of parameters. It is mentioned in the earlier section 
that, synchronous bursting of neurons is required for some 
physiological activities (e.g. hormone release) which occur 
in some circadian rhythms. Therefore, analysis of the 
response of a neuron with time varying threshold might help 
to explore the mechanism of the correlated physiological 
activities. As real neurons are noisy, firing threshold of the 
model neuron is allowed to be noisy periodic in order to 
mimic a response like real biological neuron. However, it is 
observed that the tonic bursting is observed for a suitable 
choice of the fluctuation parameter (λ3). In the present work, 
firing pattern seems to mimic the threshold function. The 
next part of the simulation is about bifurcation of the 
response function driven by a noisy input function. A mixed 
mode threshold is considered for computation. Analysis 
reveals the complex dynamical features of the system. In the 
absence of any external input, the system exhibits a 
transition from a fixed point to an oscillatory state (Fig 7a). 
With a very small change in the external input the system 
demonstrates different state of firing (Fig 7b) which is 
further illustrated by the respective phase planes (Fig 8). 
Bifurcation diagram is also constructed for constant, 
periodic and noisy periodic inputs in turn and in each case 
complex firing pattern is observed. It can be concluded that 
the response of FHN system with a time varying input 
function exhibits a totally chaotic dynamics when the time 
step of integration acts as a bifurcation parameter.   
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