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Abstract—The viscous fingering instability of miscible flow 

displacements in a homogeneous porous media is examined in 
the case involving reversible chemical reactions between the 
fluids. The problem is formulated using continuity equation, 
Darcy’s law, and volume-averaged forms of convection-
diffusion-reaction equation for mass balance. Full nonlinear 
simulations using a pseudo-spectral method combined with 
semi-implicit finite-difference time-stepping algorithm, allowed 
to analyze the mechanisms of fingering instability that result 
from the dependence of the fluids viscosities on the 
concentrations of the different species. In particular, the study 
examined the effects of varying important parameters namely 
the Damkohler number that represents the ratio of the 
hydrodynamic and chemical characteristic time scales, and the 
chemical reversibility coefficient, and analyzed the resulting 
changes in the finger structures.   
 

Index Terms—Viscous fingering, miscible displacements, 
Reversible chemical reaction, Homogeneous porous media.  
 

I. INTRODUCTION 

hen a viscous fluid is used to displace another one 
of a larger viscosity, a frontal instability appears at 

the interface between the two fluids, which may 
dramatically affect the overall efficiency of the displacement 
process. This instability may grow to form fingers that 
propagate in both upstream and downstream directions and 
is referred to as fingering or Saffman-Taylor instability [1]. 
The instability can be triggered by either viscosity mismatch 
and is referred to as viscous fingering or density mismatch, 
where it is known as the Rayleigh-Taylor instability. Such 
instabilities are encountered in a wide variety of processes 
that include enhanced oil recovery, soil remediation, 
chromatography and CO2 sequestration. Many experimental 
and theoretical studies have focused on the frontal instability 
of non-reactive displacement processes, where 
hydrodynamic interactions between the fluids result in the 
viscous fingering instability. In these studies the effects of 
different parameters were examined and most of these 
studies were reviewed in [2-4].  

The viscous fingering instability may develop in 
conjunction with chemical reactions in a wide variety of 
processes such as underground water treatment, tertiary 
heavy oil recovery, spreading of chemical pollutants 
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chromatographic separation, polymer synthesis and 
processing as well as fixed bed regeneration [3]. There has 
been a growing interest in analyzing such reactive flow 
instability and a number of studies have examined the 
reactive flow. One of the earliest studies of reactive 
displacements in porous media was conducted by out by 
Naser-El-Din et al. [5], where the reaction leads to an 
interfacial tension decrease in a secondary oil recovery 
process. A number of subsequent experimental studies 
examined the effects of different parameters such as 
stoichiometry [6], geometry orientation [7], finger growth 
rate [8], chemical composition [9], external electrical field 
[10], variation in the physical properties of the phases [11], 
and precipitation [12].  

Analytical and numerical Modelling of reactive flow 
displacements has been carried out by a limited, but growing 
number of studies [13-18]. These studies have considered 
either auto-catalytic or non-autocatalytic reactions.  

All existing studies dealing with reactive viscous 
fingering have assumed the chemical reaction to be 
complete. However the reversibility of the reaction plays an 
important role in many phenomena studied in physics, 
chemistry, biology, and geology [19]. For example, in the 
in-situ soil remediation, promising results were reported by 
Zhang, 2003 [20], where a reactive fluid was injected to 
remove the pollutant from the underground water. The first 
study on reactive-diffusive systems with reversible reaction 
was carried out by Chopard et al., (1993) [21] who studied 
the properties of a reversible reactive front with initially 
separated reactants. It was reported that the dynamics of the 
reactive front can be described as a crossover between 
irreversible and reversible regimes at short and long times, 
respectively. A subsequent study [22] confirmed the  
existence of a crossover between short time "irreversible" 
and long-time "reversible" regimes. In a recent study, Sinder 
et al., (2011) [23] investigated the reaction rate of a 
reversible reactive-diffusive process when the reactants are 
initially mixed with different diffusion coefficients by using 
the boundary layer function method. The authors reported 
that the reactive-diffusive process for this case can be 
considered as a quasi-equilibrium process and analyzed the 
dependence of the reaction rate on the initial distribution of 
the reactants.  

In all previous studies of reversible reactive displacement 
processes, only the diffusive effects were considered. 
However, when the injection of one of the reactants is 
required, the convective term needs to be considered in 
addition to the diffusive one. In such a case, the 
displacement process is expected to be dominated by 
convection rather than diffusion. Therefore, it is important 
to analyze reversible reactive-diffusive-convective flow 
displacements to understand the effects of reversibility on 
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the flow dynamics as well as on the overall efficiency of the 
displacement process. 

II. MATHEMATICAL MODEL 

A two-dimensional displacement is considered in which 
both fluids are incompressible and fully miscible. The flow 
takes place in horizontal direction in a homogeneous 
medium of constant porosity  and permeability K. A 
schematic of the two-dimensional porous medium is shown 
in Fig. 1. The length, width and thickness (z-direction) of 
the medium are Lx, Ly and b respectively. 

The medium is assumed to be initially filled with a 
solution of a reactant (B) of viscosity B. A miscible fluid 
(A) of viscosity A is injected from the left-hand side with a 
uniform velocity U to displace fluid (B). The direction of the 
flow is along the x-axis and the y-axis is parallel to the 
initial plane of the interface. A reversible chemical reaction 
occurs between the two fluids leading to the formation of a 
product (C) of viscosity C: 

 

CBA                                                  (1) 
 

 
Figure 1: Schematic of a two-dimensional porous medium. 
 

As time proceeds, more product accumulates at the 
interface between the two reactants. Figure 1 shows an 
idealized distribution of the two reactants (A) and (B) and 
the product (C), with two fronts. One between the reactant 
(A) and the product (C); (A - C) while the other is between 
the reactant (B) and the product(C); (C - B), and they are 
referred to as the trailing and the leading front, respectively. 
It should be stressed that this is an idealization of the system 
and the three chemical species are actually present to a more 
or less degree everywhere in the region where the reaction 
takes place. However, this concept of a leading and trailing 
front will be helpful in the interpretation and explanation of 
the results.  

The flow is governed by the equations for conservation of 
mass, momentum (Darcy's Equation) and the transport of 
the three chemical species. 
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    In the above equation, v = ui+ vj is the velocity vector 

with u and v  the x- and y- components respectively, p the 
pressure,   the viscosity, K  the medium permeability and 

 its porosity. The concentrations of the two reactants and 
the product are denoted by A, B and C, respectively while 
DA, DB and DC are their corresponding diffusion 
coefficients. Furthermore, k is the reaction constant while kr 
represents the reverse reaction constant. For simplicity, it 
will be assumed that all species have the same diffusion 
coefficient, i.e. DA=DB=DC=D.  

Since the characteristic velocity for the fluid flow through 
the porous medium is U/, we adopted a Lagrangian 
reference frame moving at a velocity U/Furthermore, 
diffusive time        D 2U 2 and diffusive length D/U are 
chosen to make the length and time dimensionless. The 
constant permeability K is incorporated in the expression of 
the viscosity by treating K  as  , and we shall refer to 

ratios of  as either viscosity or mobility ratios. The rest of 
the scaling is as follows: the velocity is scaled with U/, the 
viscosity and pressure with A  and  DA , respectively, 

and the concentration with that of the pure displacing fluid, 
A0. The dimensionless equations are: 
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    In the above equations, dimensionless variables are 

represented with asterisk while 2
0a UDkAD   is the 

Damkohler number representing the ratio of hydrodynamic 

to chemical characteristic times and 2
rr UDkD   

represents a reversible Damkohler number.  
Two additional dimensionless groups are also involved, 

namely the Péclet number DULPe x and the cell aspect-

ratio yxr LLA  that appear in the boundary conditions 

[26].  
Following previous studies, an exponential concentration 

dependent viscosity model is adopted to complete the model 
[24-26],  
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where Rb and Rc are the log-mobility ratios between the 
species as follows: 
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An associated mobility ratio at the chemical front 

between the chemical product (C) and the reactant (B), and 
between the reactant (A) and the  product (C) can be also 
defined as: 
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 It should be stressed here that the different fronts, 

whether it is the initial reactive front between (A) and (B) or 
the idealized leading and trailing ones will be unstable 
whenever their mobility ratios are strictly positive, while 
they will be stable if the mobility ratios are negative or zero. 

For convenience, in all that follows, the asterisks will be 
dropped from all dimensionless variables. 

III. NUMERICAL TECHNIQUE 

The above problem is formulated using a stream-function 
vorticity formulation, where the velocity field, the stream-
function  and the vorticity  are related as: 
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In the above equation 2 is the Laplacian operator. With 
this formulation, the continuity equation is satisfied 
automatically and the convection dispersion equations take 
the forms: 
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The pressure term is eliminated by taking the curl of 
equation (8) resulting in the following relationship between 
the vorticity and the concentrations of the three chemical 
species: 
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Equations (16)-(20) form a closed set that can be solved 

for the concentration and velocity fields. The system of 
partial differential equation is solved by decomposing the 
variables as a base-state and a perturbation. The perturbation 
terms consist of a random noise centered at the initial 
interface between the reactants A and B, with the magnitude 
of the noise decaying rapidly away from the interface. The 
resulting system of three partial differential equations is 
solved using a highly accurate pseudo-spectral method 
based on the Hartley transform [26, 27]. This method allows 
to recast the partial differential equation in time and space 
into an ordinary differential equation in time. The solution 
for the time stepping of the reactive-diffusive-convective 
equations was generated by using a semi-implicit predictor-
corrector method along with an operator-splitting algorithm. 

IV. RESULTS  

A. Numerical Code Validation 

The numerical code has been validated by comparing the 
time evolution and the related viscous fingers interactions to 
those presented by Hezaji and Azaiez (2010) [26] for the 
non-reversible case (Dr=0). It has been noted that the 
dynamics of fingering were identical when the same 
parameters were used  along with the same spatial resolution 
and time step size. In addition, the numerical convergence of 
the numerical results has also been tested by varying the 
spatial resolution and the time step. In this study, unless 
mentioned otherwise, a spatial resolution of 256 x 256 is 
used along with a time step dt=0.005. 

The flow evolution will depend on the mobility ratios of 
the different species; Rb and Rc as well as Pe, Ar, Da and Dr. 
In order to limit the analysis to the effects of the reversibility 
of the chemical reaction, the following parameters are fixed 
as Ar=2, Pe=1000 and Da=1, unless mentioned otherwise. 

For brevity and illustration purposes, the time sequences 
will not be always presented necessarily at the same time 
intervals, and only the frames that reveal new and 
interesting finger structures that help in the discussion, are 
shown. Moreover the analysis and discussion will examine 
the case where the initial front between the two reactants is 
unstable, i.e. 

BA μμ   or equivalently for Rb>0.  

B. Effects of the Chemical Reaction 

Prior to discussing the effects of chemical reversibility, a 
brief explanation of the effects of chemical reaction on the 
viscous fingering instability is presented. More details can 
be found in [26]. Figure 2 shows a time sequence of 
contours of the displacing fluid in the case of non-reactive 
flow displacement for a mobility ratio of Rb=3. This implies 
that the displacing fluid (A) is less viscous than the 
displaced one and as a result, an instability in the form of 
finger shaped structures develops at the interface. As the 
flow evolves, the fingers extend in the flow and grow 
through different mechanisms of interactions.  
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t=400                                       t=500 

 
Figure 2: Contours of (A) for a non-reactive flow: Rb=3. 
 
Corresponding contours when a reaction takes place in 

the flow leading to a chemical product (C) with Rc=5, are 
shown in Figure 3. The Damkohler number in this case is 
equal to 0.5. Clearly the frontal instability is modified by the 
reaction resulting in a larger number of fingers that tend to 
be thinner and to have more complex structures. In what 
follows, we will focus on the effects of the chemical 
reversibility (Dr) on the flow in the case of a reactive flow 
displacement. 

For the purpose comparisons with later results, contours 
of the chemical product (C) for case depicted in Figure 3 are 
shown in Figure 4. First, it should be noted that contours of 
the chemical product actually allow to illustrate the finger 
structures of the displacing fluid (A) (compare the trailing 
front in Figure 4 with those in Figure 3) as well as those of 
the displaced one (B) through the leading front. This 
indicates that plots of the chemical product contours actually 
allow to show the development of the instability at all fronts, 
and hence it will be used in all subsequent figures. Note that 
both the leading and trailing fronts are unstable. 
Furthermore, as time proceeds and more product is 
generated, the fingers develop more and extend both 
upstream and downstream.   

 

  
t=200                                       t=300 

   
t=400                                       t=500 

Figure 3: Contours of (A) for a reactive flow: Rb=3, Rc=5, 
Da=0.5. 
 

   
t=200                                       t=300 

    
t=400                                       t=500 

Figure 4: Contours of the chemical product (C) for a 
reactive flow: Rb=3, Rc=5, Da=0.5. 

 

C. Effects of the Chemical Reversibility 

Figure 5 depicts contours of the chemical product (C) in 
the case of a chemical reaction with Rb=1 and Rc=3. These 
numerical values imply that the chemical product (C) is 
more viscous than the reactant (B) which itself is more 
viscous than the reactant (A).  It should be noted that in this 
case the trailing front is expected to be unstable (Rc/2>0) 
while the leading one should be stable (Rb-Rc/2<0). Figure 
5-a shows the contours for the non-reversible case (Dr=0) 
while figure 5-b presents the corresponding contours for the 
reversible reaction case with Dr=0.3. 

In the non-reversible reaction flow, the instability 
develops early in time and result in quite complex fingers 
that extend mainly in the upstream direction. Note that by 
t=1900, the fingers have almost reached the left side of the 
domain. 

 

   
t=500,                                        t=900 

    
t=1500,                                      t=1900 

(a) 
 

    
t=500,                                        t=900 

   
t=1500,                                      t=1900 

 (b) 
Figure 5: Contours of the chemical product (C) for a 
reactive flow: Rb=1, Rc=3, Da=1, (a) Dr=0, (b) Dr=0.3. 
 

It is clear in this case that reversibility results in a less 
number of fingers, which actually are less developed and 
extend less in the upstream and downstream directions. Note 
also that the fingers are more diffuse and less complex than 
in the non-reversible reaction flow (Figure 5-a).  
Furthermore, as expected, the amount of product in the 
medium has also decreased. It is however interesting to note 
that the leading front between (C) and (B) is virtually stable 
in the case of the flow involving a non-reversible reaction 
(Figure 5-a) while actually it has developed instabilities 
when there is chemical reversibility (see Figure 5-b namely 
at t=1900). This result may be explained by the fact that in 
the non-reversible case the leading (downstream) front is 

Proceedings of the World Congress on Engineering 2013 Vol III, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



 

actually stable because the chemical product (C) is more 
viscous than the displaced reactant (B). However, as the 
reaction reverses, less chemical product is expected to be 
present at the leading front, giving rise to more reactants to 
be in contact and therefore a more unstable front (recall 
Rb>0). 

Contours for flow displacements with Rb=3 and Rc=2 are 
shown in Figure 6. This mobility distribution implies that 
the chemical product is more viscous than the displacing 
reactant (A) but less viscous that reactant (B). Furthermore, 
in this case the leading and trailing fronts defined earlier are 
unstable (Rb-Rc/2>0, Rc/2>0), and hence one expects that 
both of these fronts will develop fingering structures. This is 
well illustrated in Figures, where one observes instability 
developing on both the trailing and leading fronts, though 
the one on the leading front is stronger. This is not 
surprising as RCB=Rb-Rc/2 is larger than RAC=Rc/2.  
 

   
t=200                                       t=300 

  
t=400                                       t=500 

Figure 6: Contours of the chemical product (C) for a 
reactive flow: Rb=3, Rc=2, Da=1, Dr=0. 
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t=400                                       t=500 

Figure 7: Contours of the chemical product (C) for a 
reactive flow: Rb=3, Rc=2, Da=1, Dr=0.3. 
 

The corresponding contours for the reversible case with 
Dr=0.3 are shown in Figure 7. It is very interesting to note 
that in this particular case, even though reversibility leads to 
more diffusive finger structures and obviously less chemical 
product, the number of fingers, their general shape as well 
as their size are virtually unchanged. This result is to be 
contrasted with the previous one where the reversibility of 
the chemical reaction has actually led to a reduction of the 
number of fingers, their size and complexity. This 
interesting result can be explained by examining the values 
of the different mobility ratios, namely Rb=3, RAC=1 and 
RCB=2. As less product is generated in favour of the 
chemical reactants as a result of the reversibility, the 
mobility ratio at the trailing front (AC) will effectively 

increase since now there is more of the two reactants in 
contact and the mobility of these two reactants, Rb, is larger 
than that at the trailing front RAC. The same is also true at 
the leading front where one has again the mobility ratio Rb 
larger than RCB. This increase in the expected instability at 
both the leading and trailing front, is however nuanced by 
the fact that it results in more mixing between the different 
chemicals that help instability to keep growing regardless of 
how fast product C is converted back to A and B. 

 
V. CONCLUSION 

The effects of chemical reversibility on the development 
of the viscous fingering instability in the case of reactive 
flow displacements in porous media were examined. It was 
found that even though reversibility leads to less chemical 
product being generated in the flow, it may or may not 
affect the hydrodynamic instability. Indeed, depending on 
the mobility ratios of the reactants and the chemical product, 
reversibility can attenuate the instability resulting is less 
fingers that are more diffuse and less complex than in the 
case of a non-reversible reaction. However, it was also 
found that reversibility may actually not affect the 
hydrodynamic instability of the displacement leading to 
similar finger structures as those observed in the non-
reversible reaction case. This was observed in flows where 
the viscosity of the chemical product lies between those of 
the two chemical reactants.  
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