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Abstract—This paper illustrates a methodology for the lap
time optimization of a race series hybrid electric vehicle based
on the indirect optimal control approach. More specifically, for
a vehicle with given characteristics running on a given track, the
optimal trajectory and powertrain power flow that minimize the
lap time are found. The paper presents a parametric model of a
sports series hybrid electric vehicle, illustrates the optimization
method and discusses simulation results.

Index Terms—hybrid electric vehicle, vehicle dynamics, op-
timal control, lap time optimization.

I. INTRODUCTION

HYBRID electric vehicles (HEVs) are becoming more
popular due to their potential to address climate change

and the demand for a limited, but increasingly expensive,
supply of fossil fuels. In addition, a new category of sports
and race HEVs is emerging [1], [2]. Although the synergy
between multiple energy sources in HEV powertrains is
normally used to bring reductions in fuel consumption and
noxious emissions, in racing the main interest is about
performance and lap time minimization.

In the case of road HEVs various control techniques have
been proposed in the literature for the powertrain energy
management, ranging from rule-based to optimisation-based
[3]–[9]. This paper presents a global optimisation-based con-
trol approach that utilises indirect optimal control techniques
to optimise not only the powertrain energy flow but also the
trajectory of a racing HEV inside a given race circuit. The
methodology is established by utilising symbolic dynamic
vehicle modelling of appropriate complexity, together with
computationally efficient optimal control software [10].

II. MATHEMATICAL MODEL

The powertrain of a Series Hybrid Electric Vehicle (S-
HEV) is schematized in Figure 1 and consists of three
branches: the spark ignition engine, the battery and the trans-
mission. In driving operating conditions, i.e. while cruising
at a constant speed or accelerating, power is request to drive
the vehicle. The spark ignition (SI) engine is mechanically
connected to the permanent magnet synchronous (PMS)
generator, which converts the engine mechanical power Pe
into the electric AC power Pg . The rectifier takes this AC
power and converts it to DC power Pr, which is provided
to the DC link. In the other branch, the battery (possibly)
provides additional power Pbl to the DC/DC converter, which
steps up the battery voltage to vdc and provides power Pb to
the DC link. The overall DC link power Pr+Pb is converted

Manuscript received March 6, 2013; revised April 3, 2013.
R. Lot is with Department of Industrial Engineering, University of Padova,

35100 Padova, Italy e-mail: roberto.lot at unipd.it
S. A. Evangelou is with the Departments of Electrical and Electronic,

and Mechanical Engineering, Imperial College London, London, UK e-mail:
s.evangelou at imperial.ac.uk

from DC into AC by the inverter, which supplies the electric
power Pi to the PMS motor. The latter is connected to
the wheels by means of a fixed ratio transmission, and the
vehicle is finally driven with power Pt. While braking, power
is driven through the transmission to recharge the battery.
Additionally, mechanical brakes extract power Ph which is
transformed into heat and definitively dissipated. Optionally,
the battery may be recharged by the SI engine when a power
surplus is available. In summary, the S-HEV has three in-
dependent power sources, respectively battery Pb, generator
Pg and brakes Ph power, that may be variously combined to
obtain the desired values of vehicle speed and acceleration.
In particular, the battery may conveniently provide boost
power while the vehicle is accelerating. However, the battery
energy is limited to the value which may be recovered during
each lap, hence it is scarse and it is important to use boost
effectively and to optimize the whole power management
process.

Finally, as a race driver is free to select his preferred
trajectory inside the track, to minimize the lap time it is
also necessary to optimize the trajectory and speed profile at
the same time as optimizing the power flow in the vehicle.

Details of the mathematical model of the S-HEV vehicle
and its powertrain, the formulation of the minimum lap time
problem and some simulation results are discussed in the
next sections.

A. Powertrain

The first power branch (Figure 1) includes the SI engine,
the PMS generator and the AC/DC converter. Modelling in
detail such elements is not trivial and out of the scope of this
work. For the purpose of lap time optimization, the essential
feature of this power branch is that the SI engine is not
mechanically connected to the vehicle transmission and so
it may deliver the maximum available power regardless of
the vehicle speed. The total power provided by this branch
is found by considering that the SI engine is a source of
(limited) power Pe, which is then reduced while flowing
through the PMS generator and AC/DC converter, that have
efficiencies (assumed constant) ηg and ηr respectively:

Pr = ηrηgPe (1)

Fig. 1. Powertrain architecture of a Series Hybrid Electric Vehicle (purple
arrows indicate power losses).
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The second power branch includes the battery and the
DC/DC converter that steps up the low voltage on the battery
side to a high voltage on the DC link side. The battery state
of charge is described by the following differential equation:

d

dt
Qb = −ib (2)

where Qb is the actual charge and ib the current of the battery,
assumed positive during the discharge phase. Moreover, the
battery power (on the low voltage side) is:

Pbl = ibvb (3)

where vb is the closed circuit voltage of the battery, which
depends both on the battery charge Qb and current ib. Such
dependence may be expressed in terms of the electrochemical
parameters and an equivalent electrical circuit [11], [12] as
follows:

vb = Eb−Rib = E0+

(
1− Qmax

Q

)
+AeB(Q−Qmax)−Rib

(4)
where Eb is the open circuit voltage, Rb is the internal
resistance, E0 is the nominal voltage, Qmax is the capacity
of the battery, and A,B are two additional constants. The
DC/DC converter is simply modelled as a static element
having a constant efficiency ηdc. Since the converter is bi-
directional, the power conversion may be described by means
of the following equation:

Pb = η
sign(Pb)
dc Pbl (5)

where Pb is the battery power on the DC link side. The
efficiency is adjusted according to the direction of the power
flow, i.e. when the positive power flows from the battery to
the DC link Pb = ηdcPbl, on the contrary when the negative
power flows from the DC link to charge the battery Pbl =
ηdcPb.

Power flow is then collected by the DC link, which drives
a bidirectional inverter. Similarly to the rectifier, the inverter
is simply modelled by means of a constant efficiency factor
ηi, therefore the power balance of the DC link and inverter
is described by the following equation:

Pi = η
sign(Pr+Pbl)
i (Pr + Pbl) (6)

where once again the efficiency is adjusted according to the
direction of the power flow sign(Pr + Pbl). The inverter
supplies the electric motor/generator, which is a 3-phase
star-connected PMS machine. PMS machines combine a
number of attractive features when used in hybrid vehicle
applications, such as higher torque-to-inertia ratio and power
density than ones of induction or wound-rotor synchronous
machines. The dynamic electro-magnetic behaviour of the
PMS machine may be effectively described in the rotor d−q
reference frame [13] by the following non-linear differential
equations:

Lq
d

dt
id = vd −Rid + pωLiq (7a)

Lq
d

dt
iq = vq −Riq − pωLiq + λ (7b)

where id, vd and iq, vq are the direct and quadrature com-
ponents of armature currents and terminal voltages, ω is the
rotor angular speed, while the other parameters are described

in Table I. Equations (7) model only the power losses due
the resistance R of the stator copper windings, while in
reality there are other electromagnetic dissipation sources
[14] such as Eddy current losses (∝ ω2) and hysteresis losses
(∝ ω2), while mechanical losses [14] include bearing losses
(∝ ω) and windage losses (∝ ω5). These additional losses
are modelled in the dynamic equation of the rotor as follows:

J
d

dt
ω =

3

2
pλiq + Tl + Td(ω) (8)

where J is the rotor inertia, Tl is the mechanical torque
exchanged with the trasmission, and Td(ω) is the dissipation
torque. The control strategy of the machine [15] uses a null
direct current id = 0. To further simplify the model, it may
be observed that the dynamics of electromagnetic phenomena
are much faster than mechanical ones, hence transient cur-
rents may be neglected. The inertia torque J d

dtω is neglected
also, as the motor inertia is much smaller than the vehicle
inertia to which it is rigidly connected. These assumptions
lead to the simplification of differential equations (7), (8)
into a set of steady-state algebraic equations, which may be
easily solved in term of currents and voltages, leading to
the following equation for the input power Pi (exchanged
with the inverter) and output power Pm (exchanged with the
transmission):

Pi = ω(Tl + Td)−
2

3
R

(Tl + Td)
2

(pλ)2
(9a)

Pm = ωTl (9b)

Equations (9) are capable of describing the reversible PMS
machine both when it works as a generator, i.e. with posi-
tive power, load torque and quadrature current, or when it
works as a motor, i.e. with negative power, load torque and
quadrature current. According to such conventions, the PMS
efficiency is:

ηm =

(
Pm
Pi

)sign(Pi)

(10)

and it is reported in Figure 2. The PMS machine efficiency
is very high in a wide range of operating condition, even if
it is very poor at low speeds, where the resistance losses Ri2q
are predominant, and at low torques, where the mechanical
losses ωTd(ω) are predominant. The figure also shows the
current iq , which is roughly proportional to the torque, and
the overall voltage

√
v2q + v2d, which is roughly proportional

to the speed. The PMS motor is connected to the transmission
and finally to the wheels in a way that the velocity ratio
between the motor angular speed ω and the vehicle forward
speed v is constant:

τ =
ω

u
(11)

It is assumed that the transmission has a constant efficiency
ηt, the bi-directional power flow is hence modelled with the
following equation:

Pt = η
sign(Pm)
t Pm (12)

i.e. when positive power flows form the PMS motor to the
vehicle Pt = ηtPm, on the contrary when negative power
flows from the vehicle to the battery Pm = ηtPt.

Brakes are simply modelled as power withdrawal, i.e a
source of negative power Ph, which is converted into heat
and dissipated.
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Fig. 2. PMS machine efficiency (solid black), current (horizontal dotted red)
and voltage (vertical dotted blue). Positive torques correspond to generator,
and negative torques correspond to motor operating conditions.

By coupling and manipulating equations (5), (6), (9),
(10), and (12), the vehicle power flow may be completely
described as a function of three independent power sources,
respectively the generator Pg , battery Pb, and brakes Ph, as
follows:

Pe = η−1e Pg (13a)
Pr = ηrPg (13b)

Pbl = η− signPb

dc Pb (13c)

Pi = η
sign(ηrPg+Pb)
i (ηrPg + Pb) (13d)

Pt = (ηiηmηt)
sign(ηrPg+Pb) (ηrPg + Pb) (13e)

The only dynamic variable of the powertrain is the battery
charge Qb, while any other variable may algebraically be
expressed as a function of Pg, Pb, Ph.

B. Vehicle and track

This section illustrates the model used to capture the
vehicle gross motion on the track for the purpose of trajectory
and speed profile optimization. The vehicle is modelled as
a single-track rigid body, running on a horizontal flat track
(Figure 3). The equations of motion in the longitudinal and

Fig. 3. Single-track vehicle model.

lateral directions are respectively:

m

(
d

dt
u− Ωv

)
= Sr + Sf cos δ − Ff sin δ − FD (14)

m

(
d

dt
v + Ωu

)
= Fr + Sf sin δ + Ff cos δ (15)

where m is the vehicle mass, u and v are respectively the
longitudinal and lateral speed, Ω is the yaw rate, (Sf , Ff )
and (Sr, Fr) are the longitudinal and lateral forces respec-
tively on the front and rear axle, FD = 1

2ρCDAu
2 is the

aerodynamic drag resistance, and δ is the steering angle. The
equation for the yaw motion is:

IG
d

dt
Ω = aFf cos δ + Sf sin δ − bFr (16)

while IG is the yaw moment of inertia, while a and b are the
distance from the vehicle center of gravity (CoG) respectively
of the front and rear axle.

Tire longitudinal forces are strictly related to the power
flow (13), in particular the propulsive power is transferred
to the real axle only, while braking power is distributed on
both axle with constant ratio rb:

Sf =
rb min(Pt + Ph, 0)

u
(17a)

Sr =
Pt + Ph − rb min(Pt + Ph, 0)

u
(17b)

where suffixes f and r refer to the front and rear axle.
Vehicle directionality is controlled by means of the steer-

ing angle δ. Tire lateral forces are assumed to be proportional
to the cornering stiffness K, (small) sideslip angle λ and tire
vertical load N as follows:

Ff = kfλf ' Kf

(
δ − aΩ + v

u

)
Nf (18a)

Fr = krλr ' Kr
bΩ− v
u

Nr (18b)

Tire loads are calculated taking into account the load transfer
from the front to the rear axle during traction (and vice versa
during braking), according to the (approximate) expressions:

Nr =
a

a+ b
mg +

h

a+ b
(Sr + Sf ) (19a)

Nf =
b

a+ b
mg − h

a+ b
(Sr + Sf ) (19b)

where h is the vehicle center of gravity height. The track
is assumed to be flat and to lay on the horizontal plane
xy. The curvature Θ of the track reference line Γ may be
calculated from its cartesian coordinates (x, y) as a function
of the travelled space s as follows:

Θ(s) =

√(
d2x

ds2

)2

+

(
d2y

ds2

)2

(20)

To add the second dimension of the strip-like track model it
is sufficient to specify the distance from the borders, which
possibly depends on the position s. To track the position
and orientation of the vehicle, it is very convenient to use
the triple of curvilinear coordinates (s, n, α), where s and n
are respectively the longitudinal and lateral position on the
road strip and α is the vehicle heading relative to the road.
As depicted in Figure 3, such coordinates are related to the
vehicle speeds by the following differential relations:

d

dt
s =

u cosα− v sinα

1− nΘ(s)
(21a)

d

dt
n = u sinα+ v cosα (21b)

d

dt
α = Ω− u cosα− v sinα

1− nΘ(s)
Θ(s) (21c)

In conclusion, sections II-A and II-B describe the power
train flow and the vehicle gross motion as a function of 7
variables x(t) = {Qb, u, v,Ω, s, n, α}T and 4 control inputs
u(t) = {Pg, Pb, Ph, δ}T .
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TABLE I
MODEL PARAMETERS

Symbol Value Parameter

m 1050 kg vehicle mass
h 0.450 m center of gravity (CoG) height
a 1.150 m CoG to front axle
b 1.000 m CoG to rear axle distancee
Iz 800 kg m2 yaw moment of inertia

1
2
ρCDA 0.378 kg/m aerodynamic drag factor
Kr,Kf 20 rad−1 tires non-dimensional sideslip stiffness
µr, µf 1.05 tires friction coefficient
rb 0.60 braking torque ratio on the front axle

Pe,max 125 kW SI engine max power
E0 200 V battery nominal voltage

Qmax 10 Ah battery capacity
ib,d 100 A battery max discharging current
ib,c 50 A battery max recharging current
Rb 0.200Ω Battery internal resistance
vdc 1000 V DC link voltage
p 6 number of pole pairs of the PMS motor
R 0.040Ω PMS stator resistance

Ld, Lq 450 mH stator inductances of PMS motor
λ 0.20 Wb rotor magnetic flux of PMS motor

im,max 250 A max current of PMS motor
τ 9 transmission ratio
ηr 0.96 rectifier efficiency
ηdc 0.96 DC/DC converter efficiency
ηi 0.96 inverter efficiency
ηt 0.85 transmission efficiency (tires included)

III. THE MINIMUM LAP TIME PROBLEM

The minimum lap time problem consists in finding the
vehicle control inputs that minimize the time T necessary to
move the vehicle from the starting line to the finish one of the
given track, by satisfying the mechanical equations of motion
as well as inequality constraints such as tires adherence, max
power, track width, etc. As the final value T of the time
variable t is clearly undefined, while the curvilinear abscissa
s varies from between fixed initial point s = 0 and end
point s = L, it is convenient to mathematically formulate
the problem in terms of the independent variable s instead
of t. Such optimal control problem (OCP) may be formulated
as follows:

find: min
u∈U

T (22a)

subject to:
d

ds
x = f (x,u, s) (22b)

ψ (x,u, s) ≤ 0 (22c)
b (x(0),x(L)) = 0 (22d)

where x and u are respectively the state variables and inputs
vector, (22b) is the state space model in the s domain,
(22c) are algebraic inequalities that may bound both the state
variables and control inputs and (22d) is the set of boundary
conditions used to (partially) specify the vehicle state at the
beginning and at the end of the maneuver.

A. State space model

The vehicle model described in Sections II-A and II-B has
to be slightly modified to take into account that in the OCP

formulation (22) it is allowed to bound the controls u, but it
is not possible to guarantee that such controls remain smooth
and to avoid unrealistic jerky maneuvers. For this reason,
powers and steering angle are not controlled directly, but via
their (bounded) time derivative, as follows:

d

dt
δ = ωδ (23a)

d

dt
Pg = mujg (23b)

d

dt
Ph = mujb (23c)

d

dt
Pw = mujh (23d)

where power controls j have dimensions of jerk [ms−3].
To be consistent with the OCP formulation (22b), the inde-

pendent variable t must be replaced with the new independent
variable s in all model equations, according to the following
derivation rule:

x′ =
dx

ds
=
dx

dt

dt

ds
=
dx

dt
t′ (24)

where the time variation with respect to the track length is
simply calculated by inverting the relation (21a) as follows:

t′ =
1− nΘ(s)

u cosα− v sinα
(25)

At this point the s-domain state space model has 11 state
variables:

x(s) = {t, Qb, u, v,Ω, n, α, Pg, Pb, Ph, δ}T (26)

and 4 inputs:

u(s) = {ωδ, jg, jb, jh}T (27)

B. Inequality constraints and boundary conditions

Inequalities (22c) are used to keep the vehicle operating
conditions inside their admissible range. Power train con-
straints include the limitation of the SI engine power:

0 ≤ Pe ≤ Pe,max (28)

The battery is constrained in terms of charge and current:

Qb,min ≤ Qb ≤ Qb,max (29a)
−|ib,d| ≤ ib ≤ |ib,c| (29b)

The PMS motor/generator is constrained in terms of voltage-
and current:

v2d + v2q ≤
v2dc
3

(30a)

|iq| ≤ im,max (30b)

Braking power is constrained to be negative:

Ph ≤ 0 (31)

The vehicle must remain inside the track borders:

−(bl − w) ≤ n ≤ br − w (32)

while w is the vehicle width and bl, br are the left and right
borders distance.
Tires adherence is constrained inside their traction ellipse:

F 2
r + S2

r ≤ (µrNr)
2 (33a)

F 2
f + S2

f ≤ (µfNf )
2 (33b)
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where µr, µr are the friction coefficients respectively for the
rear and front tire.

To complete the problem definition it is necessary to
specify boundary conditions (22d). As the optimization is
made on a closed loop track, it is natural to impose cyclic
boundary conditions for all state variables x(s), except for
the time t - which is obviously acyclic.

C. Solution of the Minimum Lap Time problem

The optimal control problem defined in equations (22) may
be solved by using various methods [16], such as non linear
programming, dynamic programming or indirect methods.
The latter approach has been used in this work. Summarizing,
the inequality constraints (22c) have been replaced with some
(approximately) equivalent terms in the penalty function
(22a) by means of a wall function W which is null when the
constraint is satisfied and becomes very large as the boundary
is approached and possibly exceeded. Moreover, the presence
of equality constraints (22b) is managed with the Lagrange’s
multiplier methods. In this manner, the constrained OCP
problem (22) is converted into the equivalent, unconstrained
minimization of the following functional:

J(x,u, s) = t(L)+
∑
j

∫ L

0

W (ψj)ds+
∑
i

∫ L

0

γi(x
′
i − fi)ds

(34)
To minimize J(·), the first variation principle is used and the
minimization problem is finally converted into a differential
boundary value problem (BVP). More details are given in
[10], [17]. Since this process heavily requires the manipu-
lation of the equations of motion at symbolically level, the
whole problem formulation has been carried out in Maple
[18]. In particular the mathematical model of the vehicle
has been modelled by using the MBSymba package [19],
then the OCP problem has been formulated by using the
XOptima package, which also automatically generates C++
code ready to be compiled. Finally, the numerical integration
of the BVP problem is performed by using the specialized
solver described in [10].

IV. SIMULATION RESULTS

Simulations have been carried out for the exemplary HEV
vehicle, whose characteristics are summarized in table I,
and the Mugello circuit. Figure 4 shows the circuit and
also the calculated optimal trajectory, speed and accelera-
tion. In order to better understand the significance of the
battery power boost and its optimal utilization, the vehicle
performances with and without the battery are compared. The
figure highlights that the boost (blue line) slightly increases
acceleration and top speed, leading to a difference in the
lap time of 189.19 s versus 191.24 s (i.e. +2.05 s) when the
battery is disabled. Secondly, the figure shows that speed
and acceleration are equal both at the beginning and at the
end of the lap, according to the imposed cyclic boundary
conditions. While acceleration is limited by engine battery
power, deceleration is limited by tire adherence. The latter is
depicted in Figure 5 in terms of the lateral force to tire load
ratio vs longitudinal force to tire load ratio, for both tires.
In particular this picture shows that the optimal maneuver
makes large utilization of combined longitudinal and lateral
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Fig. 4. Lap time optimization at the Mugello circuit: optimal trajectory,
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dashed red: battery disabled).
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Fig. 5. Adherence of the rear and front tires (solid blue: reference HEV
vehicle, dashed red: battery disabled).

forces, as only race drivers do. Figure 6 highlights the vehi-
cle power flow from the spark ignition engine and battery to
the PMS motor/generator. During acceleration, the SI engine
is capable of providing the maximum power regardless of
the vehicle speed, indeed the engine may easily operate at
the speed of maximum power thanks to the absence of any
mechanical coupling between the engine and the traction
axle. The battery presents a more evident on/off operational
mode, approximately switching from the positive maximum
of delivered power to the negative maximum of recharge
power. As it is required that the battery state of charge
(SoC) at the end of the lap should be equal to the beginning
(as depicted in figure 7), the integral of battery power is
slightly negative to counterbalance power train losses. It
may be observed that the battery is recharged not only by
recovering energy during braking, but also by using the SI
engine power when there is some surplus (e.g. at s=3000 m)
and even during acceleration (e.g. 1250 . s . 1500,
6500 . s . 6800, etc.). This effect is more evident by
analyzing the PMS power: the maximum battery power is
used to boost the acceleration from s = 400 m (blue line vs
red line), at s = 1020 m the battery boost is not more used
because the energy stored in the battery is not more sufficient.
From s = 1180 m, the reference case highlights that the full
available SI engine power is not provided to the PMS motor
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Fig. 7. Battery State of Charge (solid blue: reference HEV vehicle, dashed
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(as in the case of disabled battery), but it is split between
the motor and the battery. In other words, to minimize the
lap time, it is convenient to use the battery to boost during
the initial phase of the acceleration, even if it is necessary to
relinquish some propulsive power in the successive phase to
recharge the battery. The proper timing of battery boost and
recharging (shown in figure 7) is hence crucial for the lap
time minimization. This task is excellently carried out with
the global optimization approach adopted, while it would be
very difficult to optimally manage the power flow by means
of some pre-determinate control strategy.

V. CONCLUSIONS

This paper illustrates a methodology for the lap time
optimization of a race series hybrid electric vehicle based
on the indirect optimal control approach. This method is
very powerful because it does not require the definition
of a specific control architecture or strategy in advance,
while system inputs are given as a result of the optimization
process. Second, the optimization is performed globally, i.e
along the whole track. This is essential in this kind of
problem, where the battery introduces a strong coupling
among the different sections of the circuit: battery boost
may be used while exiting from a curve only if the battery

has been recharged while braking in another section, not
necessarily close to the first one.

Conversely, the indirect method is not so popular due to
the difficulties associated with the problem implementation
as well as the numerical solution. The transformation of
the constrained optimization problem into an equivalent
boundary value problem (BVP) requires the definition of an
optimization-tailored model and the symbolic manipulation
of the model equations, that in the present work have
been performed by using computer symbolic algebra tools.
This approach also leads to very computationally efficient
applications, with the optimizations in this paper carried out
in times much faster than real time, highlighting that this
approach may be applied effectively to more complex vehicle
models as well.
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