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Abstract—This paper deals with the problem of the
aeroelastic stability of a typical aerofoil section with two
degrees of freedom induced by the unsteady aerodynamic
loads. A method is presented to model the unsteady lift and
pitching moment acting on a two-dimensional typical aerofoil
section, operating under attached flow conditions in an
incompressible flow. Starting from suitable generalisations and
approximations to aerodynamic indicial functions, the
unsteady loads due to an arbitrary forcing are represented in a
state-space form. From the resulting equations of motion, the
flutter speed is computed through stability analysis of a linear
state-space system.

Index Terms—Aerodynamics, Aerofoil, Flutter

1. INTRODUCTION

FLUTTER is the dynamic aeroelasticity phenomenon
whereby the inertia forces can modify the behaviour of a
flexible system so that energy is extracted from the
incoming flow. The flutter or critical speed Vris defined as
the lowest air speed at which a given structure would exhibit
sustained, simple harmonic oscillations. Vy represents the
neutral stability boundary: oscillations are stable at speeds
below it, but they become divergent above it.

Theodorsen [1] obtained closed-form solution to the
problem of an unsteady aerodynamic load on an oscillating
aerofoil. This approach assumed the harmonic oscillations in
inviscid and incompressible flow subject to small
disturbances. Wagner [2] obtained a solution for the so-
called indicial lift on a thin-aerofoil undergoing a transient
step change in angle of attack in an incompressible flow.
The indicial lift response makes a useful starting point for
the development of a general time domain unsteady
aerodynamics theory. A practical way to tackle the indicial
response method is through a state-space formulation in the
time domain, as proposed, for instance by Leishman and
Nguyen [3].

The main objective of this paper is to investigate the
aeroelastic stability of a typical aerofoil section with two
degrees of freedom induced by the unsteady aerodynamic
loads defined by the Leishman’s state-space model.

II. AEROELASTIC MODEL FORMULATION

The mechanical model under investigation is a two-
dimensional typical aerofoil section in a horizontal flow of
undisturbed speed ¥, as shown in Fig. 1. Its motion is
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defined by two independent degrees of freedom, which are
selected to be the vertical displacement (plunge), 4, positive
down, and the rotation (pitch), ¢. The structural behaviour is
modelled by means of linear bending and torsional springs,
which are attached at the elastic axis of the typical aerofoil
section. The springs in the typical aerofoil section can be
seen as the restoring forces that the rest of the structure
applies on the section.
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Fig. 1. A typical aerofoil section with two-degree of freedom

The equations of motion for the typical aerofoil section
have been derived in many textbooks of aeroelasticity, and
can be expressed in non-dimensional form as
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where Cy(t) and Cp(t) denote the coefficients of the
aerodynamic forces corresponding to pitching moment and
lift, respectively. For a general motion, where an aerofoil of
chord ¢=2b is undergoing a combination of pitching and
plunging motion in a flow of steady velocity ¥, Theodorsen
[1] obtained the aecrodynamic coefficients
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The first term in (3) and (4) is the non-circulatory or
apparent mass part, which results from the flow acceleration
effect. The second group of terms is the circulatory
components arising from the creation of circulation about
the aerofoil. Theodorsen’s function C(k)= F(k)+iG(k) is a
complex-valued transfer function which depends on the
reduced frequency k&, where
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a,, represents a quasi-steady aerofoil angle of attack, i.e.

ths=£+oz+b(l—05)g (6)
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The indicial response method is the response of the
aerodynamic flowfield to a step change in a set of defined
boundary conditions such as a step change in aerofoil angle
of attack, in pitch rate about some axis, or in a control
surface deflection (such as a tab of flap). If the indicial
aerodynamic responses can be determined, then the
unsteady aerodynamic loads due to arbitrary changes in
angle of attack can be obtained through the superposition of
indicial aerodynamic responses using the Duhamel’s
integral.

Assuming two-dimensional incompressible potential flow
over a thin aerofoil, the circulatory terms in (3) and (4) can
be written as
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where s is the non-dimensional time, given by
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@, is Wagner’s function, which accounts for the influence

of the shed wake, as does Theodorsen’s function. In fact,
both Wagner’s and Theodorsen’s function represents a
Fourier transform pair. Wagner’s function is known exactly
in terms of Bessel functions [see [2] for details], but for
practical implementation it is useful to represent it
approximately. One of the most useful expressions is an
exponential of the form
@, ()=1-Ae™ -Ae"™ )
One exponential approximation is given by R.T. Jones [4]
as
@, (s)=1-0.165¢""> —~0.335¢™"" (10)
The state-space equations describing the unsteady
aerodynamics of the typical aerofoil section with two
degrees of freedom can be obtained by direct application of
Laplace transforms to the indicial response as
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The main benefit of the state-space formulation is that the
equations can be appended to the equations of motion
directly, very useful in aeroservoelastic analysis.
Furthermore, it permits the straightforward addition of more
features to the model, such as gust response and
compressibility.

The indicial approach and the state-space formulation
lead to a dynamic matrix that governs the behaviour of the
system and enables future prediction. The analysis of flutter
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in this case is straightforward and it can be performed in the
frequency domain, since the eigenvalues of the dynamic
matrix directly determine the stability of the system. If, for a
given velocity, any of the eigenvalues has a zero real part,
the system is neutrally stable, i.e., it defines the flutter onset.

III. RESULTS AND DISCUSSION

In this section, the stability analysis of the state-space
aeroelastic equation is presented. The results have been
validated against published and experimental results.

A. Validation against Published Results

Theodorsen and Garrick [S] presented a graphical
solution of the flutter speed of the two-dimensional aerofoil
for the flexture-torsion case. In order to validate the present
model, a flutter speed computation is performed with
varying combinations of aeroelastic parameters, as used by
Theodorsen and Garrick, as shown in Table I.

TABLEI
AEROELASTIC PARAMETERS FOR THE VALIDATION
Case x, K a r
a 0.2 1/3 -0.4 0.25
b 0.2 1/4 -0.2 0.25
c 0 /5 -03 0.25
d 0.1 1/10 -0.4 0.25

Fig. 2. shows the comparison of the flutter margin from
Theodorsen and Garrick’s work with the present
computation. In the graph, non-dimensional flutter speed
Vp* is presented as a function of the frequency ratio w, /w, .

As can be seen, the present method provides a good
agreement with the published figures only for low frequency
ratios. In fact, as the ratio approaches unit value, the actual
curve drifts to generally lower speeds.
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Fig. 2. Comparison of flutter boundaries from Theodorsen and Garrick [5]
with present computations

This discrepancy is probably due to numerical
inaccuracies in the curves presented in the original work.
Zeiler [6] found a number of erroneous plots in the reports
of Theodorsen and Garrick and provided a few corrected
plots. In order to verify the validity of Zeiler’s statement, the
numerical computation of the flutter speed is conducted
using the aeroelastic parameters used by Zeiler.
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Fig. 3 shows some of the results obtained by Zeiler, by Zeiler. Secondly, validation with experimental data was
compared to the figures obtained by Theodorsen and conducted and the results showed a fairly close agreement.
Garrick and those obtained using the present state-space

method. As can be observed, the agreement with Zeiler is REFERENCES
very good, whereas Theodorsen and G.ar'rlck’s rgsults [1] T. Theodorsen, General Theory of Aerodynamics Instability and the
deviate considerably. This confirms the validity of Zeiler’s Mechanism of Flutter, NACA Report number: 496, 1934

statement and provides evidence of the validity of the results ~ [2] H. Wagner, Uber die Entstehung des dynamischen Auftriebes von
obtained here Tragfliigeln, Zietschrift fir Angewandte Mathematik und Mechanik,

. 5(1), 17-35, 1925.
6 Sxax‘n-~1>aoo‘al‘ [3] J.G. Leishman, and K.Q. Nguyen, “State-space representation of
o Zeiler(a) o unsteady airfoil behavior”, AIAA Journal, 28(5), 863-844, 1989.
[4] R.T. Jones, The unsteady lift of a wing of finite aspect ratio, NACA
report number: 681, 1940.
[5] T. Theodorsen and L.E. Garrick, Mechanism of flutter: a theoretical
and experimental investigation of flutter problem, NACA Report
o Zeiler(c) number: 685, 1938.
o TjS; [6] T.A. Zeiler, “Results of Theodorsen and Garrick revisited”, Journal of
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Fig. 3. Comparisons of flutter boundaries from Zeiler [6],
and Theodorsen and Garrick [S5] with the present
computations. The parameters used are a = -0.3, ¥ = 0.05,
ri=025,b=0.3 (a) x,= 0 (b) x,= 0.05 (c) x, = 0.1, (d) x,
=0.2.

B. Validation with Experimental Data

An experiment on flutter speed was performed at 5 x 4
Donald Campbell wind tunnels. Pitch and plunge are
provided by a set of eight linear springs. Airspeed was
gradually increased until the onset of flutter. The parameter
values used in the experimental study are x, = 0.00064, x =
0.0157, a = -0.1443, r, = 0.4730, b = 0.05, w, = 61.5637,
and w;, = 8.8468.

The non-dimensional flutter speed resulting from the
present computation flutter analysis is V., * = 4.31 and that
from the experimental study is V., * = 4.04. The comparison
shows that the value of the experimental flutter speed is
therefore 6.26% smaller than the numerical flutter speed.
This is may be due to the error and uncertainty that is well
accepted to occur in experimental studies, and which has
affected the flutter speed measurement. Nevertheless, the
flutter speed obtained in the experiments agrees with the
numerical results fairly well.

IV. CONCLUSIONS

A model to determine the flutter onset of a two-
dimensional typical aerofoil section has been implemented
and then validated. A traditional aerodynamic analysis,
based on Theodorsen’s theory and Leishman’s state-space
model was used. The validation was performed, firstly, by
solving Theodorsen and Garrick’s problem for the flexture-
torsion flutter of a two-dimensional typical aerofoil section.
The stability curves obtained are in close agreement with the
results reported by more recent solutions of the same
problem, whereas the original figures from Theodorsen and
Garrick are found to be biased, as was previously reported

ISBN: 978-988-19252-9-9 WCE 2013
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)





