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Abstract— The presence of clearance in the mechanical joints 

leads to small position variation of the mechanism elements. 

The goal of this work is to model and analyze the equilibrium 

positions of elements in planar six-bar mechanisms with 

complex chain. To solve this subject, it is necessary to use a 

mathematical optimization code in order to obtain the optimal 

solution of the problem. To show the effectiveness of the 

proposed method, examples are presented and the numerical 

results obtained show that a good convergence was obtained in 

each case. 

 
Index Terms—Six-bar mechanism analysis, joint clearance, 

complex chain, optimization 

 

I. INTRODUCTION 

he existence of clearance in the joints is necessary to 

allow the possibility of relative movements in the joints 

with satisfactory values of contact pressures. However, 

the presence of clearance induces errors in positioning  the 

various components in the structure. 

To minimize these errors, it is essential to take into account 

the presence of joint clearance for an accurate calculation of 

the elements’ positions. This aims to give an optimal result 

of the mechanisms’ studies. 

Potiron et al. [1] proposed a new method of static analysis in 

order to determine the arrangement of the various 

components of planar mechanisms subjected to mechanical 

loadings. This study concerns the planar mechanism with 

closed chain and parallel joints. The study takes into account 

the presence of linkage clearance and allows for the 

computation of the small variations of the parts position 

compared to the large amplitude of the movements useful for 

the power transmission. 

It appears that a rather small number of research tasks were 

carried out in this particular field. Funabashi et al. [2] 

tackled the problem by carrying out a dynamic, theoretical 

and experimental study of some simple mechanisms. In 

order to specify the influence of the clearance in the links on 

machine operations, they derived the equations of the 

movement of links including parts stiffnesses, viscous 

friction and Coulomb's friction in joints. The results are 

interesting for the specific models suggested but they don’t 
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lead to a general usable method suited for the study of 

complex mechanisms. 

A model of mechanism with joint's clearance was defined by 

Giordano et al. [3] when researching the dimensional and 

geometrical tolerances associated with machine elements. 

The method is based on the definition of small rigid-body 

displacements and the use of closed loops equations for the 

associated kinematic chains.  

To improve the quality of manufactured products and reduce 

their total cost, Gao et al. [4] and Chase et al. [5] have 

developed a method for the tolerance analysis of two and 

three-dimensional mechanical assemblies. This method is 

carried out by a direct linearization of a geometrical non-

linear problem. It was implemented in a commercial C.A.D. 

code, in order to extract from the results, acceptable 

tolerances and the dimensions of the related parts. 

In the same topic, Chase and Parkinson [6] presented an 

outline on recent research in the analysis of mechanical 

tolerances, from which it is possible to have an idea of how 

to handle the study of the joints' clearance in mechanisms. 

In the study of Erkaya and· Uzmay [7] a dynamic response 

of mechanism having revolute joints with clearance is 

investigated. A four-bar mechanism having two joints with 

clearance is considered as a model of mechanism. A neural 

network was used to model several characteristics of joint 

clearance. Kinematic and dynamic analyses were achieved 

using continuous contact mode between journal and bearing. 

A genetic algorithm was also used to determine the 

appropriate values of design variables for reducing the 

additional vibration effect due primarily to the joint 

clearance. 

Hsieh [8] has proposed a method allowing for the kinematic 

description of mechanisms containing prismatic, revolute, 

helical and cylindrical joints. Unfortunately, it cannot be 

directly applied to mechanical systems containing spherical 

pairs. 

In this work, a method is proposed to analyze the six-bar 

mechanisms with complex chain. Given a geometrical 

position, resulting from the great amplitude of movements in 

the mechanism, it will be possible to compute the 

equilibrium positions of the various parts in the six-bar 

mechanisms with complex chain by taking into account the 

joint clearance. The main idea is to define and minimize an 

objective function and to take into account the geometrical 

constraints imposed by the clearance on infinitely small 

displacements in the joints. 

During these studies, we suppose that the joints in the 

mechanism are carried out with clearances, the solids are 

undeformable, the solids are geometrically perfect, i.e. the 
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defects due to the tolerances of forms and of positions are 

ignored and the gravity force is neglected. 

II. SIX-BAR MECHANISM WITH COMPLEX CHAIN 

The mechanism is constituted by six bars linked one with the 

other by a seven simple revolute joints Li having a clearance 

joint Ji and an origin Oi (i =1,..,7). To show the influence of 

the presence of clearances in the mechanism, the scale of 

these clearances are much large compared with the 

mechanism dimensions as shown in the following figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Six-bar mechanism with complex chain 

 

Since the solid S0 is connected to S1, S5 and S3 and this latter 

is connected to S0, S2 and S4, the chain mechanism is 

complex. The joints between the elements of six-bar 

mechanism are shown in the figure below: 
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Fig. 2 Joints between the elements of six-bar mechanism 

 

The relative positioning of parts can be reduced to the study 

of the relative positions of the references associated with 

each piece of mechanism. 

Consider R1(O1,X1,Y1,Z1) the fixed reference connected to 

frame "S0". The origin O1 is theoretically the geometric 

center of the joint L1 between the two solids "S0" and "S1". 

The other references Ri(Oi,Xi,Yi,Zi) (i=2,..,7) are movable. 

The point Oi is the geometric center of the joint Li. 

In our work, the abscissa axes Xi (i=1,..,7) are parallel. Also, 

Yi axes are parallel. 

 

III. DESIGN VARIABLES OF SIX-BAR MECHANISM 

 

Consider Ai (i=1,..,7) as the points which coincide initially 

with the origins Oi. If the mechanism is stressed by a 

mechanical load, the points Ai move into the empty space of 

clearances joints. In the two-dimensional study and in the 

fixed coordinate system (O1, X1, Y1, Z1), each solid of the 

mechanism has the possibility of two translation along the 

X1 and Y1 axes and rotation relative to the Z1 axis. 

In the local coordinate system (Oi, Xi, Yi, Zi) (i=1,..,7), each 

point Ai has three degrees of freedom. It has the possibility 

of two displacements ui and vi respectively along the Xi and 

Yi axes and a rotation i with respect to the Zi axis. These 

parameters represent the relative movements of the solid 

with respect to each other and they are the design variables 

of the problem. In the absence of great amplitude 

movements, the displacement and rotation of solid S1 

compared to S0 in the point A1 are defined in the motion 

vector as follows: 
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Similarly, other parameters are contained in the following 

vectors: 
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Therefore, the six-bar mechanism has 21 design variables: 

the components ui, vi and i, of the vectors )S/S(
011A

D , 

)S/S(
122A

D , )S/S(
233A

D , )S/S(
034A

D , )S/S(
435A

D , 

)S/S(
546A

D  and )S/S(
057A

D  which are the unknowns of 

the problem. The vector x contains these 21 design 

variables: 

 

 T

777666555444333222111
vuvuvuvuvuvuvu x  (3) 

 
IV. METHOD FOR SEARCH THE EQUILIBRIUM 

POSITION OF SIX-BAR MECHANISM 

 

A. Optimization method 

 

 From a mathematical point of view, the optimization 

problem consists of minimizing the objective function 

Obj(x) subjected to constraints imposed by the problem. It 

follows that the problem can be defined as: 
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Minimize Obj(x) (4) 

 

Subjected to the following optimization constraints : 

 

g ( ) 0i x     i = 1,..,m (5) 

hj(x) = 0   j = 1,..,n (6) 

 

g ( )i x  and hj(x) are respectively the constraints of inequality 

and equality equations of the problem. 

The resolution of this problem is considered here by using 

mathematical algorithms and iterative methods which 

require the calculation of the derivative, or the sensitivity, of 

the objective function and the constraints with respect to the 

design. This stage of calculation is integrated into the 

optimization process where the calculation is carried out 

iteratively. 

 

The design variables are limited by the geometry : 
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B. Objective fucnction 

 

 The objective function is the potential energy of the six-bar 

mechanism calculated by means of a kinematically 

admissible field. It is given by: 
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Bi is the application point of the mechanical load defined by 

Fix and Fiy along the Xi and Yi axes and by the torque Ciz 

with respect to Zi axis. Components 
0ii S/SBu   

0ii S/SBv   and 

2ii S/SB   are respectively the X and Y displacements and 

the rotation with respect to Z of Bi belonging Si in the global 

reference. 

 

C. Inequality constraints 

 

 In the local reference (Oi,Xi,Yi,Zi), the point Ai can move in 

the inner surface of the circle with center Oi and radius 
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Since the origins O3, O4 and O5 belong to the same solid S3, 

inequality constraints must be imposed. Indeed, the 

movements of A3 and A5 belonging to S3 with respect to S0 

depends on the displacement of A4 belonging to  S3 with 

respect to  S0. These are between 
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D. Equality constraints 

 

 Based on figure 2, relations between the different 

movements vectors, defined before, are: 
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These relationships should be reduced to the same point. 

The development gives six linear equations. In matrix form, 

we obtain: 
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V. FIRST NUMERICAL APPLICATION 

 

Consider the case where the geometry of the mechanism and 

the applied load are symmetrical with respect the plan 

O4Y4Z4. The middle of two solids S1 and S2 are subjected to 

identical negative forces F1x and F2x following the opposite 

direction of the X axis. Two other forces F4x and F5x are 

applied in the middle of elements S4 and S5 having the same 

modules of F1x and F2x but in the opposite direction. 

 

The initial coordinates of joint centers are: 
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The clearances in the joints are identical: 

 

J1 = J2 = J3 = J4 = J5 = J6 = J7 = 0.2mm 

 

The proposed optimization algorithm requires an iterative 

calculation for the convergence of the design variable x to 

the optimal solution. The final numerical values are placed 

beside each joint origin. In this case, the equilibrium 

position of the six-bar mechanism is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Equilibrium position of six-bar mechanism after 

loading 

 

Since the studied mechanism has a symmetrical geometry 

and loading case with respect to the plane O4Y4Z4, the 

displacements of A1, A2 and A3 are respectively symmetrical 

with respect to the movement of A7, A6 and A5. In addition, 

we find that the solid S3 has no displacement along the X-

axis or rotation relative to the Z axis. 

Since 
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representing the joints clearances. 

 

 

 

VI. SECOND NUMERICAL APPLICATION 

 

In this section, another form of six-bar mechanism will be 

processed. The two elements S1 and S5 are vertical while the 

other elements S2, S3 and S4 are horizontal. The clearance 

joint of L1 is equal to the sum of the clearances in the joints 

L2 and L3 (J1 = J2 +J3). In the same way, the clearance J7 is 

the sum of J5 and J6. 

A horizontal force is applied to the middle of the bar S1 in 

the negative direction of the X axis while the middle  of bar 

S5 is loaded by another force having the same modulus of 

the first but in opposite direction. 

The initial coordinates of the joint centers are: 
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The clearances of the joints L2, L3, L4, L5 and L6 are 

identical (J2 = J3 = J4 = J5 = J6 = 0.2 mm) while others are: 

J1 = J7 = 0.4 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Position of six-bar mechanism after loading 

 

The results show that there is no movement of point A4. For 

the elements S1, S2, S3, S5 and S6, there is no rotation 

movement relative to the Z. This is normal because 

J1 = J2 +J3 and J7 = J5 + J6 but these elements move only 

along the X axis. 

 

VII. CONCLUSION 

 

To provide accurate relative movement and to minimize 

geometrical errors in a mechanism, it is essential to control 

the clearance in joints between parts. The purpose of this 

study is to propose an analytical method for determining the 

static equilibrium positions of the various components of 

six-bar mechanisms with complex chain and subjected to 

mechanical loads. The study takes into account the presence 

of the joint clearance in the mechanism. The method is based 

on the minimization of potential energy, taking into account 

the constraints imposed by the geometry of the joints. The 

results show the effectiveness of the method. 
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v7 = -5.9 10-21 mm 

7 = -1.0 10-19 rad 

u2 = 0.1 mm 

v2 = 7.0 10-19 mm 

2 = 3.7 10-19 rad 

u1 = -0.2 mm 

v1 = 2.4 10-17 mm 

1 = -2.7 10-19 rad 

u4 = 8.1  10-17 mm 

v4 = 1.6 10-21 mm 

4 = -1.0 10-19 rad 
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