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contains a specified proportion of a population.
Abstract — This paper provides procedures for constructing Often one desires to construct from the results of a
unbiased simultaneous prediction limits on the observations or previous sample an interval which will have a high
functions of observations of all ofk future samples using the probability of containing the values of all & future

results of a previous sample from the same underlying observations. For example, such an interval would be
distribution belonging to invariant family. The results have ) pe,

direct application in reliability theory, where the time until the ~ '€quired in 95t§b|i5hi”9 limits on the values of _some
first failure in a group of several items in service provides a performance variable for a small shipment of equipment
measure of assurance regarding the operation of the items. The when the satisfactory performance of all units is to be
simultaneous prediction limits are required as specifications on guaranteed, or in setting acceptance limits on a specific lot
future life for components, as warranty limits for the future ¢ areria) when acceptance requires the values of all items

performance of a specified number of systems with standby . o L . .
units, and in various other applications. Prediction limit is an in a future sample to fall within the limits. An interval which

important statistical tool in the area of quality control. The contains the values of a specified number of future
lower simultaneous prediction limits are often used as warranty Observations with a specified probability is known as a
criteria by manufacturers. The initial sample and k future  prediction interval. Such an interval need be distinguished
samples are available, and the manufacturer wants to have a poth from a confidence interval on an unknown distribution
high assurance that all of thek future orders will be accepted. parameter, and from a tolerance interval to contain the

It is assumed throughout thatk + 1 samples are obtained by - . .
taking random samples from the same population. In other values of a specified proportion of the population. Research

words, the manufacturing process remains constant. The WOrks on prediction intervals related to a single future

results in this paper are generalizations of the usual prediction Statistic are abundant (see Hahn and Meeker [1], Patel [2],
limits on observations or functions of observations of only one and references therein).

future sample. In the paper, attention is restricted to invariant In many situations of interest, it is desirable to construct

families of distributions. The technique used here emphasizes |, e simultaneous prediction limits that are exceeded with
pivotal quantities relevant for obtaining ancillary statistics and

is applicable whenever the statistical problem is invariant Probabilityy by observations or functions of observations of
under a group of transformations that acts transitively on the all of k future samples, each consisting rf units. The
parameter space. Applications of the proposed procedures are prediction limits depend upon a previously available
given for the two-parameter exponential and Weibull complete or type Il censored sample from the same
distributions. The exact prediction limits are found and gisyripution. For instance, two situations where such limits
illustrated with a numerical example. . .
are required are:
Index Terms — Future samples, observations, simultaneous 1A cust.ome.r has plaf:ed an. Orfjer .for a product which has
prediction limits an underlying time-to-failure distribution. The terms of his
purchase call fok monthly shipments. From each shipment
the customer will select a random samplenofnits and
I. INTRODUCTION accept the shipment only if the smallest time to failure for

STATISTICAL intervals used by engineers and otherfliS Sample exceeds a specified lower limit. The
include confidence intervals on a population parameté?]anUfaCt“rer wishes to use the results of a previous sample
such as the mean, and tolerance intervals. ConfiderfRen units to calculate this limit so that the probabilityyis
intervals give information about parameter of the populatiofat allk shipments will be accepted. It is assumed thanthe

or a function of population parameters such as a percenti@St units and them future units are random samples from

tolerance intervals give information about a region whicH® same population.. o
2. A system consists af identical components whose

times to failure follow an underlying distribution. Initially
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previously tested components. Similar problems also arise i@?ﬁj ,...,ij) represent thgth random sample from the cdf
various product maintenance and servicing problems.
Prediction limits can be of several forms. Hahn [3] dea
with simultaneous prediction limits on the standard”
deviations of all of thek future samples from a normal sample of sizen.. Assume that all ok samples from the
population. Hahn [4] considered the problem of obtainingame cdf are independent. Then a lower simultanecus (1
simultaneous prediction limits on the means of ak ifture  prediction limith on ther;th order statistic,
samples from an exponential distribution. In addition, Hahn
and Nelson [5] discussed such limits and their applicatior}é.
Mann, Schafer, and Singpurwalla [6] gave an interval that
X . . . . % >h,..,Y >h,..,Y >h
contains, with probabilityy; all m observations of a single { (m.my) (rj.m;) (e, my) }
future sample from the same population. Fertig and Mann
[7] constructed prediction intervals to contain at least k ;i r'f rki [ml} [mj] [”k]
+ 1 out ofm future observations from a normal distribution PSP R
with probability 8. They considered life-test data, and the
performance variate of interest is the failure time of an item. {Y > h}— P {Y > h}
Their lower prediction limit constitutes a “warranty period”. y 1 (s +1my) 71 Gz.mp) =1-a, (1)
In this paper we give an expression for obtaining unbiased [mz} ’

ﬁg(.), where@ is the parameter (in general, vectgrj1,
.k}, and IetY(,j m) denote thejth order statistic in thigh

fmp), =1, ..,
of all ofk future samples may be obtained from

i1:0 ijZO ikZO J

simultaneous prediction limits on order statistics of alk of

future samples. In order to obtain the unbiased simultaneoug

prediction limits, attention is restricted to invariant familied" "€"€

of distributions. In particular, the case is considered where a i =Zk:i- . my = : m. . )
previously available complete or type Il censored sample is = ! = !

from a continuous distribution with cumulative distribution

function (cdf) F((x-£)/0) and probability density function
(pdf) 1/of((x—t)/0), where F(O) is known but both the
location () and scaled) parameters are unknown. For suc
family of distributions the decision problem remains

iy

(Observe that an uppeaimultaneousa prediction limit h
may be obtained from a lower simultaneous prediction limit
by replacing ta by a.)
h

Proof.

invariant under a group of transformations (a subgroup of

X X ) % >h,..,Y >h,...,Y >h
the full affine group) which takeg (the location parameter) (r.m) (rj.m;) (e my)
and o (the scale) intey + b andcag, respectively, wherb K
lies in the range of;, c > 0. This group acts transitively on = |‘| pg{y > h}
the parameter space and, consequently, the risk of any j=1 (rj.mj)

equivariant estimator is a constant. Among the class of such B
H ; « ” J m: . e

estimators there_ is. therefo_re a best one. The eﬁgct of _ I—l Z LR (R T ()™

imposing the principle of invariance, in this case, is to i

reduce the class of all possible estimators to one. In the

present paper we investigate this question for the problem ofy-1 rj-1 -1 [ml]

j:lIJ':O

m; , _
constructing the unbiased simultaneous prediction limits of Y .)..) [i"}---[r.rk][':e(h)]'z[l‘Fe(h)]mz_'z-
order statistics in future samples. =0 ;=0 k=0 ] '

The technique used here emphasizes pivotal quantities 3)
relevant for obtaining ancillary statistics. It is a special cas&ince
of the method of invariant embedding of sample statistics
into a performance index [8-11] applicable whenever the
statistical problem is invariant under a group of

Iy

[ Fo(h)]'= [~ Fo(h)]™ "=

,
transformations which acts transitively on the parameter Zz: My [Fg(h)]i[l—Fg(h)] m -i
space (i.e., in problems where there is a unique best  (mg - =i
invariant procedure). The exact unbiased simultaneous — ~ is is - ‘ _
prediction limits on order statistics of all kffuture samples - Z‘[mzj[ F ()] '[L- Fy(h)] ™
are obtained via the technique of invariant embedding and i=0
illustrated with numerical example.
PH{Y >h}_P5{ . h}
Il. MATHEMATICAL PRELIMINARIES - lzrimg) Gzme) ) (4)
The main theorem, which shows how to construct lower [mz}

(upper) simultaneous prediction limit for the order statistics Iz

in all of k future samples when prediction limit for a singlethe joint probability can be written as
future sample is available, is given below.

Theorem 1 (Lower (upper) simultaneous prediction limit pg{y >h,...Y >h,..Y > h}
under complete information). Lety “future” observations (1. m) r5m;) (T M)
ISBN: 978-988-19251-0-7 WCE 2013
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SRR (R IR

y PH{Y(iz +1L,ms) > h}_ PH{Y(iz,mz) > h}

)
ms
[iz }
This ends the proofl]
Corollary 1.1. If rj= 1, 0j=1(1)k, then
PH{Y(Lml) >h ,...,Y(lmj) >h,...,Y(lmk) >h}
= PH{Y(l,mz) > h} =1-a. (6)

Theorem 2 (Lower
prediction limit under parametric uncertainty). L¥{ € ... <

X;) be ther smallest observations in a random sample of size
n from the cdfF, (), where thed is the parameter (in
ij) be thejth random

general, vector), and Iet(\(lj

sample ofmy “future” observations from the same cflil{1,

., k}. Assume that K+1) samples are independent and the
X;) be any

parameterd is unknown. LetH=H(Xy ...,
statistic based on the preliminary sample andYI@Jt’mj)

denote therjth order statistic in th§th sample of sizem,.
Then an unbiased lower simultaneousdjLprediction limit

H on ther;th order statistics((rj mp), i=1, ...,k of all of k
future samples may be obtained from
Eg{Pg{Yﬁlyml) >H, ’Y(fk'mk) > H}}
I’l—l r] -1 I’k—l m n,\(

i1=0 |J—0 ik =0
>}
=1

EH{PH{Y(IE +1.mz) > H}} - EH{PH{Y(iz,mz)

’ (rj,mj)

X -a.
ms
is
(7
Proof. For the proof we refer to Theorem 1.
Corollary 2.1. If rj= 1, 0j=1(1)k, then
EH{PH{Y(lml) >H ,...,Y(lmj) >H ,...,Y(lmk) > H}}
= EH{PG{Y(l,mz) > H}} =1—0’. (8)

Remark 1. In this paper, in order to find the unbiased

lower simultaneous (a) prediction limit H on therjth
order statisticé((,j my), =1, .,

the technique of invariant embedding [8-11] is used.

A. Left-Truncated Weibull Distribution

Theorem 3 ((Lower (upper) unbiased prediction lintit
for the Ith order statisticy; in a new (future) sample oh

(upper) unbiased simultaneous

k, of all ofk future samples,

the basis of the preliminary data sample) Xek ... < X, be

the firstr ordered observations from the preliminary sample
of sizen from the left-truncated Weibull distribution with
the pdf

f, (x):% X0 Lexpl-(x° - 1)/ o], < = p,0,5>0), (9)

where 8= (1,0,9), Jis termed the shape parametgiis the
scale parameter, and is the truncation parameter. It is
assumed that the parametéris known. Then a lower
unbiased (%a) prediction limitH on thelth order statistic,

from a set ofm future ordered observatioNs< ... < Y, also
from the distribution (9) is given by
H=(x¢ +w,s)", (10)
where
=1 Ly DD
ol [ o el +a)
ar nl( jz : : =1-a|,
L (n+m=l+i+D) (=1 +i+D)
S m(n+m-I)!
“(m=Di(n+m)!’
_ m(mn-|)! - _
i 1= 4]
it g< m(n+m-I|)!
(m=D!(n+m!’
(11)
S=Y (X7 -X)+(-N(X =X (12)

i=1

(Observe that an upper unbiasegrediction limitH on the
Ith order statisticy;, may be obtained from a lower unbiased
(1-a) prediction limit by replacing-ia by a.)

Proof. It can be justified by using the factorization

theorem that(xf ,S) is a sufficient statistic forg o). We

wish, on the basis of the sufficient statistﬂ(Xf,S) for

(1,0), to construct the predictive density function of ttie
order statisticy; from a set ofm future ordered observations
Y.< ... £ Y, By using the technique of invariant embedding

[8-11] of (X{,9), if XY, or (Y°,9), if XY, into a
pivotal quantity (Y° - )/ o or (X{ - u)/ o, respectively,
we obtain an ancillary statistic

observations from the left-truncated Weibull distribution ont follows from (14) that

ISBN: 978-988-19251-0-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

w =(y? - x?)/s. (13)
It can be shown that the pdf'df is given by
-1y
m ._1( i jeﬂ[1+vw(m—l+i+J>] N
n(r_])l[l j; n+m-| +i+1 ’
FW) =1t w >0; (14)
m(n+m-I)! -
n(r ‘Dm( )
if w <O0.
WCE 2013
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)<L (' i_lJ(—J)i [L+wgy (-1 +i+27
nl(I jz

S (n+m-| +H + D +i+])

PW >wy) =< jf W, =0; (15)
__m(m+n—)! )
. (m=N!(m+n)! v,
if wy <0.
where
w, =(H®-x¢)/s. (16)

This ends the proofl]

Corollary 3.1. If | = 1, then a lower (@a) prediction limit
H on the minimumY; of a set ofm future ordered
observation¥; < ... <Y, is given by

LW
r-1
XJ +3 " T, >-M
1 m[(l—a')n+ n+m
H= vs a7
1
xf—§( m jr‘l— o if a<DD
n| La{n+ n+m

B. Two-parameter Exponential Distribution

Theorem 4 (Lower (upper) unbiased prediction lirkitfor
the Ith order statisticy, in a new (future) sample ah
observations from the two-parameter

S=2 (X = X))+ (n-r)(X; = Xy).
i=1

(21)

(Observe that an upper unbiasegrediction limitH on the
Ith order statisticY, may be obtained from a lower unbiased
(1-a) prediction limit by replacing4a by a.)

Proof. For the proof we refer to Theorem 3.

Corollary 4.1. If | = 1, then a lower (@a) prediction limit
H on the minimumY; of a set ofm future ordered
observation¥; < ... <Y, is given by

1

S n 1 s m
Xt [(1—a)(n+mi] By e
H = (22)

1
_§ m I’—l_ . m
X nMMJ % e

Remark 2. Let us assume that the parent distributions are
the two-parameter exponential

Fo &)= 1- ex;{—
1

where 8= (6,,6,), and the Pareto distribution

X_Hz

j, x28,, 6,>0, (23)

FokF + 6, kY% ,x26,>0 6,>0. (24)

Let X be a random variable with the Pareto distribution (24),
and defineY = InX. ThenY becomes a random variable with
the exponential distribution (23), whei is replaced by

exponentiah&. Therefore it is enough to consider only the exponential

distribution on the basis of the preliminary data sample) Lelistribution, because the results for the Pareto distribution

Xy <

... £ X, be the firstr ordered observations from theare easily obtained from

those for the exponential

preliminary sample of sizen from the two-parameter distribution.

exponential distribution with the pdf
fo)=Zexp-(x-f)/0], &zp, >0, (18)

where @ = (,0), ois the scale parameter, apds the shift

C. Two-parameter Weibull Distribution

In this paper, the two-parameter Weibull distribution with
the pdf

o-1 o
of X X
parameter. It is assumed that these parameters are unknowfe(¥) :E[E] ex{—(EJ ] x> 0,5>05>0, (25

Then a lower unbiased &) prediction limitH on thelth

order statisticy; from a set o future ordered observations indexed by scale and shape paramefeesid J is used as

Y.< ... £ Y, also from the distribution (18) is given by

H =X, +w,S, (19)
where
=1 D
N (D) [L+wy (=1 +i +1)]
argnl _ _ =l-a|,
(IE (n+m-=I +i +H(m~I +i +1)
_J: m(n+m-=1)!
Y =) az(m—l)!(n+m)!'
_ m(m+n-I)! -« _
arél (=D J Mj !
it g< m(n+m-I)!
(m=N(n+m!’
(20)
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the underlying distribution of a random variabfein a
sample of the lifetime data, whe@=(5,0). We consider
both parameterg, dto be unknown. LetX;, ..., X,) be a
random sample from the two-parameter Weibull distribution
(25), and letB, & be maximum likelihood estimates 6f &

computed on the basis oKy ..., X,). In terms of the
Weibull variates, we have that

~\O ~\0
o
A =(§] YA =3_, Vs :[g] (26)
are pivotal quantities. Furthermore, let
Z, =(X;1B8)°, i=1,...n. (27)
It is readily verified that anp-2 of thez's, sayz, ..., Z»

form a set of n-2 functionally independent ancillary
statistics. The appropriate conditional approach, first
suggested by Fisher [12], is to consider the distributions of

WCE 2013
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V1, V,, V5 conditional on the observed valueZP = (7, . -1 m
Z.). (For purposes of symmetry of notation we include all of PAY 2H} = Z(k][ Fo( H)] [ Fp(H)]™™
Z, ..., Z, in expressions stated here; it can be shownzahat k=0
Z..1, can be determined as functionsZgf..., Z,, only.) I 5\ 1K S\ K
Theorem 5. (Joint pdf of the pivotal quantmatl V, from :Z(mj - ex _(ﬂj ex _(ﬂ) . (33)
the two-parameter Weibull distribution) Ley(< ...< X,) be k B B

the firstr ordered observations from a sample of siZeom riting (33) as
the two-parameter Weibull distribution (25). Then the join¥v 9

pdf of the pivotal quantities/;,V, conditional on fixed 1/m I HY “ HY)
7=(z, ..., z) is given by R{Y 2H }:Z(k I-ex —(EJ exp—(m- k)(z]
k=0

r
feav, 1270) =9 @[] 27 ™
1=1

-1 5(3} ~\O
= m 1-exp — ﬂ ° ﬁ
xex;E—v{ZzﬁHn rz" D v;10(0, ®), v,0(0, ), (28) =\ k I I

where s
0 r r =T 1 xex —(m—k) ﬂ 5(?) E ?
g (") = jr(r)v£‘2|‘1|a-“2(§z-“2 +(n—r)z¥2j dv | (29) 5 \B
0 = =
is the normalizing constant. 1 m
Proof. The proof is omitted herel = k—O[kj [1-expCz7v I exp(m=-k) z7v;)

Theorem 6. (Lower (upper) unbiased prediction lirtit

for the Ith order statisticY; in a new (future) sample oh = K (K
observations from the two-parameter Weibull distribution ofF Z( JZ( J( Dlexpl-v( m-k+) 28] =RZ >z,| vV},
the basis of the preliminary data sample) Xek ... < X, be =IYEN
the firstr ordered observations from the preliminary sample (34)
of sizen from the two-parameter Weibull distributid®5). \where
Then a lower unbiased &) prediction limitH on thelth 5
order statisticy; from a set ofn future ordered observations Z :(LIJ , (35)
Y.< ... £ Yy, also from the distribution (25) is given by B
we have from (28) and (34) that
H=arg[ Ef PLY, = H}| 2"} =1-0a]=2{°B, (30)
where B By Y 2H| 2V =B RZ 22 v v} 2"}

Ef PAY 2 H}| 2"} oo

= [[P(Z) 2 2 vy, Vo) (v, 120)dvidlv,.— (36)

© 1-1 m k k (m k+J)ZH 00
A e . .
R = k i\ +Z; +(n-r)z Now v; can be integrated out of (36) in a straightforward
— i=L _ ,(31) way to give (31). This completes the proof.
A v Corallary 6.1. If =1, then
[v2 |'|z 22 +(n-n)z?
—1 —
0 1=1 i - 5 v —r W
H o Tvr—zlr—lz‘vz (H\J +iz|v2 +(n I‘)Z;/Z dv
zy ==, 32 2 i ) i B 2
H (ﬂj (32) 0 1=1 B i=1
s _ - ) H=arg .
Z = IBY.,i=1..,r; B and J are the maximum L Y
V2 V2 — 2
likelihood estimates fofs andd based on the firstordered .[VZ I_lz' ;z‘ =Nz | dvy
observations ;< ... £X;) from a sample of size from the - 0 h h
two-parameter Weibull distribution (25). =1-a |
(Observe that an upper unbiasegrediction limitH on the (37)
Ith order statisticY, from a set ofm future ordered
observationsy; < ... € Y,, may be obtained from a lower [ll.  NUMERICAL EXAMPLE
unbiased (ta) prediction limit by replacing 4o by a.) An industrial firm has the policy to replace a certain

Proof. If there is a random sample ah ordered device, used at several locations in its plant, at the end of 24-
observationsy; < ... <Y, from the two-parameter Weibull month intervals. It doesn’t want too many of these items to
distribution (25) with the pdf(y) and cdfF4y), then for the fail before being replaced. Shipments of a lot of devices are
Ith order statisti¢y;, we have made to each of three firms. Each firm selects a random
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sample of 5 items and accepts his shipment if no failur@sll occur in each shipment befoké=5 month intervals.
occur before a specified lifetime has accumulated. The

manufacturer wishes to take a random sample and to

IV. CONCLUSION AND FUTURE WORK

calculate the lower prediction limit so that all shipments will | this paper we propose the technique of constructing
be accepted with a probability of 0.95. The resultingnpiased simultaneous prediction limits on observations or
lifetimes (rounded off to the nearest month) of an initigfnctions of observations in all df future samples under

sample of size 15 from a population of such devices agrametric uncertainty of the underlying distribution. These

given in Table 1.

TABLE |
THE RESULTING LIFETIMES (IN NUMBER OF MONTH INTERVALS)

Observations

Xi X1 X2 X3 X4 X5 X6 X7
Lifetime 8 9 10 12 14 17 20
Xg X9 X10 X11 X12 X13 X14 X15

25 29 30 35 40 47 54 62

Goodness-of-fit testing. It is assumed that
Xi ~ g ()= x* T expl-(x° - ) 9],

X=u,0 9> 0),i= 1115 (38)

where the parametegsand g are unknown; §=0.87). Thus,
for this exampler = n=15,k=3, m=5, I-a = 0.95,
X2 =61, and S= 170.8. It can be shown that the

i i
i(n—i (X - Xi%)
j =2

D (n=i+(X° - X2y)

i=2

, 1=10n-2, (39)

unbiased simultaneous prediction limits are based on a
previously available complete or type Il censored sample
from the same distribution. We present an equation for this
type of unbiased simultaneous prediction limits which holds
for any distribution and any statistic from the previous sample
when a prediction limit for a single future sample is

available. The exact prediction limits are found and

illustrated with a numerical example. The methodology

described here can be extended in several different
directions to handle various problems that arise in practice.
We have illustrated the proposed methodology for the two-
parameter exponential and  Weibull distributions.

Application to other distributions could follow directly.
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