
 

 
Abstract—Topology optimization has been widely used in 

industrial designs. One problem related to topology optimization 
is that the uncertain elements may result when gradient-based 
search methods are used. Although using binary coding genetic 
algorithms (GA) can avoid the problem, the problems of 
structural connectivity and computational cost are the obstacles 
to be solved. Two novel approaches are proposed in this 
research to solve these GA-related problems. To ensure the 
integrity of the topology generated, a weak ground structure is 
built in the entire design space to play the role of connecting the 
disconnected material distributed by GA. To reduce the 
computational cost, a method of reducing the design space by 
using the result obtained by gradient-based search methods is 
proposed. A design example shows that applying these two 
proposed approaches can effectively overcome the problems 
associated with GA to solve topology optimization problems. 

 

 
Index Terms—Genetic algorithm, reducing design space, 

topology optimization, weak ground structure 
 

I. INTRODUCTION 
TRUCTURAL topology optimization was developed by 
BendsØe and Kikuchi in 1988 [1]. It is a very powerful 
technique that can be used to help designers to get a 

near-optimal initial design. Since then, the method has been 
widely used in various industries and many commercialized 
CAE packages have included this method in their analyzing 
and design modules.  

The fundamental idea of topology optimization is to 
determine the optimal distribution of limited material in the 
designated space such that the structure formed can satisfy the 
constraints and also optimize the design objective. Initially 
the selected design space is filled with 2-D or 3-D finite 
elements. At the end of the topology optimization process, 
some finite elements in the design space will be kept and 
others are deleted. The structural material will be distributed 
to those remaining elements. The optimal topology in the 
design space is thus created.  

There are two methods to solve topology optimization 
problems. The first method is called homogenization 
approach which was introduced by BendsØe and Kikuchi [1]. 
Using this method, each finite element in the design space is 
associated with three design variables. The homogenization 
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process is employed to determine the stiffness of each finite 
element. At the end of the optimization process, if the stiffness 
of a finite element becomes very small, it is eliminated from 
the design space. The topology is thus formed by the 
remaining finite elements in the design space. The second 
approach is named solid isotropic microstructure with penalty 
(SIMP) developed by Zhou and Rozvany [2] in 1991. Using 
the approach, each finite element is associated with only one 
design variable. The young’s modulus of a finite element is 
assumed to be a simple function of the associated design 
variable. The design variable value varies between 0 and 1 
that represents the disappearance and appearance of the 
element, respectively. At the end of the optimization process, 
the design variables with value 1 determine the topology of 
the structure in the design space. Because the SIMP approach 
has a smaller number of design variables, it is more attractive 
than the homogenization approach. However, when solving 
the topology optimization problems with SIMP approach by 
gradient-based search methods, some design variable values 
may not exactly equal to 0 or 1. This might cause difficulty to 
identify the topology of the structure. Although some extra 
efforts have been tried to minimize the number of gray 
elements (design variable value not equal to 0 or 1), the gray 
element still cannot be eliminated completely when 
gradient-based search methods are employed to solve 
topology optimization problems [3]. Other methods should be 
considered to overcome this drawback of yielding gray 
elements. 
  Genetic algorithm was first introduced by Holland in 1975 
[4]. It simulates the natural evolutionary process to generate 
better or fittest species to survive the environment. Three 
artificial evolutionary operators were developed to simulate 
the natural evolutionary process. The first operator is called 
selection which selects better individuals in a generation to be 
parents and the parents are saved in a mating pool for later 
operations to generate offspring. The purpose of this operator 
is to keep better individuals and eliminate worse individuals 
from one generation to the other. The second operator is 
named crossover which plays the role of exchanging genes 
between selected parents in the mating pool. The purpose of 
this operation is to generate new individual (offspring). 
Through exchanging of genes between parents, better 
offspring may result. The last operator is the mutation 
operator which changes some genes in some individuals. The 
purpose of this operation is to generate some new offspring 
that may not be yielded by the crossover operation. These 
three operations are executed sequentially and repeatedly 
until the convergence criterion is satisfied. The original GA 
uses binary coding to represent design variables in 
optimization problems. The 1’s and 0’s in the binary string are 
the genes of an individual (a design). Through decoding 
process, the values of design variables can be obtained and the 
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performance of the design can be computed using these values. 
The three GA operations are executed on those binary strings 
directly. Because each bit in a binary string can only be 0 or 1, 
it is thus suitable to be used as the design variable for topology 
optimization. No gray elements will appear by using these 
binary strings.  

Although using binary coding GA can avoid gray elements, 
there still exist two problems associated with GA in solving 
topology optimization problems. The first problem is related 
to the integrity of the yielded topology. This is due to the 
stochastic search nature of GA. When executing the three GA 
operations, some or all of the binary strings of offspring may 
not form admissibly connected topologies. These 
inadmissible topologies cannot be analyzed and thus causes 
the failure of GA search. The second problem is with the 
computational cost. In GA search, a very large number of 
function evaluations are needed. For topology optimization, 
each individual in a generation needs at least one finite 
element analysis. To complete the finite element analyses for 
all individuals in a generation consumes a tremendous 
computational time. These two factors impede the use of GA 
to solve topology optimization problems. 
   To overcome the topological integrity problem, some 
strategies have been published. Madeira et al. [5] developed a 
chromosome repairing technique to increase the number of 
admissible topologies. Madeira et al. [6] also developed 
another approach to build tree structure to ensure the 
connectivity of structures. Jakiela et al. [7] used seed elements 
as basis and other elements must be adjusted to connect to the 
seed elements. Wang et al. [8] employed penalty function to 
eliminate inadmissible connectivity. Tai and Akhtar [9] used 
underlying skeleton as base structures to connect loading, 
fixed nodes and output nodes. Materials are added to the base 
structures gradually. Choi and Yoo [10] used blurring 
technique to improve connectivity. Balamuvugau et al. [11] 
assigned a minimum material to each element to ensure the 
admissible connectivity. Fanjoy et al. [12] developed a 
special single-point crossover operation to ensure proper 
connectivity. 
   All these methods can solve the connectivity problem to 
some extent. However, most of them are complicated and 
difficult to be incorporated with commercialized finite 
element packages. Therefore, an easy approach is proposed in 
this paper to treat the topological integrity problem. The basic 
idea is to construct a weak structure in the entire design space 
to serve as a net to connect topologically distributed material. 
To save the computational time, a method of reducing the 
design space is also proposed in the later sections. 

II. TOPOLOGY OPTIMIZATION 
  The use of SIMP approach to solve topology optimization 
problems was proposed by Zhou and Rozvany [2]. The 
young’s modulus of the finite element in the design space is 
assumed to be a function of the design variable associated 
with the element as follows. 
 

0ExE ii
α=                                                         (1) 

where ix  is the design variable associated with the ith 
element and its value is between 0 and 1. α is a penalty 
parameter used to penalize design variables not equal to 0 or 1. 
Usually its value is between 2 and 4. E0 is the young’s 

modulus of the material. Ei is the young’s modulus used for 
the ith element for finite element analysis during the 
optimization iterations. Because Xi is a continuous variable, 
even if a penalty is given, there is still no guarantee that its 
value will be 0 or 1 when a gradient-based solver is employed. 
This makes difficulty to determine if the corresponding 
element should exist or not. However, if the binary coding GA 
is used as the optimization solver, the design variable value 
can only be 0 or 1. Therefore, a clear topology without any 
uncertain elements can be formed.  

III. APPLICATION OF GA TO SOLVE TOPOLOGY 
OPTIMIZATION PROBLEMS 

Before using GA to solve an optimization problem, some 
parameters must be determined first. These parameters 
mainly are the population size, the bit length for each design 
variable, the crossover probability, and the mutation 
probability. Each individual in a population represents a 
design. The initial population is generated by using a random 
number generator. After having the initial population, the 
three GA operators are executed sequentially and repeatedly 
to generate new offspring until the convergence criterion is 
satisfied. There are some different approaches to perform the 
three GA operators. The detailed discussion can be found in 
Goldberg’s book [13]. In this research, the tournament 
selection approach is used for selection operator. Using this 
approach, two individuals are randomly selected from the 
population to compete. The winner will be selected as a parent 
to generate offspring. The single-point crossover approach is 
used for the crossover operation. Fig.1 shows the crossover 
operation. The crossover point is determined randomly. The 
genes of the two parents exchange after the crossover point to 
generate two offspring.  

 

 
 

Fig. 1 Single-point crossover 
 
The simple mutation approach is used for mutation 

operation. Fig.2 describes the simple mutation scheme. The 
mutation points are selected randomly. At the mutation point, 
the bit value changes from its original value 0 to 1 or 1 to 0. 

 

 
 

Fig. 2 Simple mutation 
 

When using GA to solve topology optimization problems, 
the binary string of an individual represents a topology in the 
design space. Each bit in a string corresponds to a finite 
element in the design space. If the bit value equals to 1, the 
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corresponding finite element exists in the design space. The 
topology is thus formed by those elements with bit value of 1. 
Because the GA searches are completely stochastic for the 
beginning to the end, the bits with value 1 can appear 
anywhere in the string. There is no guarantee that elements 
with bit value 1 can be interconnected to form an admissible 
structure. This is the biggest obstacle of using GA to solve 
topology optimize problem. 

A novel and easy approach to overcome this problem is 
proposed in this research. That is to build a very weak ground 
structure which is composed of all elements in the entire 
design space. The Young's modulus used for the ground 
structure is much lower than the Young's modulus for the 
actual material used for the topological design. The finite 
elements used to form the topology are laid on this ground 
structure. Because the ground structure is a fully connected 
structure, no matter what topology is formed, the combined 
structure is always connected and can be analyzed. Since the 
Young's modulus used for the ground structure is very small, 
the stiffness of the structure contributed by the ground 
structure can be neglected. 

The advantages of using this approach over other 
approaches discussed in the previous section are four fold. 
The first advantage is that no connectivity check and repairing 
are needed. The second advantage is that the original GA can 
be applied directly. No modification of GA is needed. The 
third advantage is that it can be easily integrated with any 
commercialized finite element packages. The ground 
structure model can be easily added to the input file for each 
individual topological structure. The last advantage is that the 
total degrees of freedom of the finite element model will not 
increase. Only the number of elements becomes double and 
this won't increase the computational time too much. 
    The other concern of using GA to solve topology 
optimization problems is the computational cost due to a large 
number of finite element analyses. To overcome this difficulty, 
a method of reducing the original design space is proposed. 
After reducing the design space, the degrees of freedom of the 
finite element models can be drastically reduced. As a result, 
the computational time can be saved significantly. To achieve 
this purpose, any gradient-based search method with SIMP 
approach is executed first. At optimality, the locations of the 
finite elements whose design variables are greater than a 
designated value are taken as the design space. This design 
space is much smaller than the original design space. The 
number of elements remained in this smaller space is much 
smaller than that in the original space. The computational 
time can therefore be reduced drastically. After implementing 
the ground structure and reducing the design space, GA can 
be easily and practically used to solve topology optimization 
problems. 

IV. NUMERICAL EXAMPLE PROBLEM 
A popular topological design example is used to test the 

ideas proposed in this research. The mathematical 
formulation is as follows. 
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where p is the force vector applied to the structure, u is the 

displacement vector of the structure. The objective C(x) is the 

compliance of the structure and it is to be minimized. M(x) is 
the total mass used in the entire design space and Ma is the 
allowable mass used in the design space. 

Fig.3 shows the 2-D design space of the problem, the 
external load and the boundary conditions for this topology 
optimization problem. Within this design space, 640 square 
quadrilateral finite elements are created. Only 25% of these 
elements can be used to form the optimum topology. The 
force is 1000 N. The Young’s modulus of the material is 207 
GPa and the Poisson’s ratio is 0.3. MSC/NASTRAN is used 
to analyze the structures.  
 

 
Fig. 3 Design space of the problem 

 
The main purpose of this example is to check the feasibility 

of the proposed ideas. In addition to that, two other purposes 
of test are performed for this example problem. The first 
purpose is to compare the topological results obtained in the 
entire design space and the reduced space. The second 
purpose is to observe the influence of GA parameters on the 
topologies obtained. In order to know whether topologies 
obtained in the entire and the reduced design space are 
different, GA searches are executed separately in the two 
design spaces for this example problem. Fig. 4 depicts the 
entire and the reduced design spaces. The entire rectangular 
area represents the original design space whereas the reduced 
space is shown with black-colored elements. The reduced 
space is obtained by choosing the finite elements with higher 
design variable values determined by a gradient search 
method. The number of these elements chosen is about the 
allowable number set by the material constraint multiplied by 
1.5.  
 

 
Fig. 4 The entire and the reduced design spaces 

 
Because the geometry, the loading, and the boundary 

constraints are symmetric about the horizontal line at the 
center of the design space, only a half finite element model is 
established. As a result, the number of design variables in the 
reduced space is further reduced to 119. The GA parameters 
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used for this example are: population size 300, crossover 
probability 0.6, mutation probability 0.002 for the entire 
design space and 0.006 for the reduced design space, binary 
string length 640 for the entire design space and 119 for the 
reduced design space. Figures 5 and 6 show the best 
topologies at the 100th generation in the entire and the reduced 
design space, respectively. It is clear that the topology formed 
in the entire design space is an inadmissible topology and 
therefore cannot be analyzed. Because there is a weak ground 
structure built in the entire design space, the disjointedly 
distributed materials are connected through this ground 
structure. The finite element analysis can thus proceed. 
However, in the reduced design space at the 100th generation, 
most materials are already interconnected. This of course 
accelerates the convergence of the search process. Fig. 7 
shows the final topology obtained in the entire design space 
and Fig. 8 depicts the optimum topology obtained in the 
reduced space. It is obvious that they are totally different. The 
topology obtained in the entire design space has 
checker-board structure near the loading location. This type 
of structure is not suitable for manufacturing and its stiffness 
is overestimated [14]. In practical point of view, the topology 
obtained in the reduced design space is better than that 
obtained in the entire design space. The compliance is 
0.001485 N-m for the topology obtained in the entire space 
and this value is obtained after 2300 evolutionary generations. 
The corresponding total number of finite element analyses is 
690000. However, the compliance obtained in the reduced 
space is 0.001356 N-m that is even slightly lower than the 
compliance obtained in the entire design space. The number 
of generations spent and the finite element analyses are 900 
and 270000, respectively. Based on these data, the 
computational cost is significantly reduced in a reduced 
design space and the resulting topology is even better than the 
topology obtained in the entire design space. 

 

 
 

Fig. 5 The best topology at the 100th generation in the entire 
design space 

 

 
 

Fig. 6 The best topology at the 100th generation in the reduced 
design space 

 

 
 

Fig. 7 Topology obtained in the entire design space 
 

 
Fig. 8 Topology obtained in the reduced design space 

 
Because GA parameters may affect the optimum solution, 

two GA parameters, the population size and the crossover 
probability, are selected for study. The population size is set 
to be 200 that is less than 300 used to obtain the topologies in 
Figures 7 and 8. To compare with different crossover 
probabilities, the crossover probabilities 0.6 and 0.7 are 
selected. Two GA searches with different crossover 
probability are executed in the reduced design space shown in 
Fig. 4. Figures 9 and 10 show the topologies obtained with 
crossover probability 0.7 and 0.6, respectively. The two 
topologies basically are similar. But the stiffness of the 
X-shaped structure in Fig. 9 seems weaker than the similar 
structure seen in Fig. 10. The compliance is almost the same 
for both crossover probabilities. Its value is 0.00144 N-m. Fig. 
11 shows the variations of the compliance of the best 
individual in every generation. It is apparent that the 
convergence speed is different for the two different crossover 
probabilities. The GA search converges at 1200 generations 
for crossover probability 0.7 and 2000 generations for 
crossover probability 0.6. The total numbers of finite element 
analyses corresponding to crossover probability 0.7 and 0.6 
are 400000 and 1240000, respectively. The use of higher 
crossover probability accelerates the convergence of this 
problem. But this phenomenon may not be true for other 
topology optimization problems, more tests are needed to 
make the conclusion. The use of smaller number of 
population and higher crossover probability may be a possible 
way to increase the probability of reducing the number of 
finite element analyses and this improves the computational 
efficiency. 
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Fig. 9 Topology obtained with crossover probability 0.7 
 

 
 

Fig. 10 Topology obtained with crossover probability 0.6 
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Fig. 11 The convergence histories for the two different 

crossover probabilities 

V. CONCLUSIONS 
Two novel approaches are proposed in this research to 

make GA search for optimum topology feasible. The weak 
ground structure built in the entire design space can easily 
solve the structural connectivity problem caused by GA 
operators. The idea of reducing design space can save 
significant computational time for finite element analyses. 
This makes GA search practical for large structures. The 
numerical example demonstrates that the ideas proposed are 
feasible and can be easily incorporated with commercialized 
finite elements packages. 

REFERENCES 
[1] M. P. Bendsoe and N. Kikuchi, “Generating optimal topologies in 

structural design using a homogenization method,” Computer Methods 
in Applied Mechanics and Engineering, vol. 71, pp. 197-224, 1988. 

[2] M. Zhou and G. I. N. Rozvany, “The COC algorithm, part II: 
topological, geometrical and generalized shape optimization,” 
Computer Methods in Applied Mechanics and Engineering, vol. 89, pp. 
309-336, 1991.  

[3] T. Y. Chen and S. C. Wu, “Multiobjective Optimal Topology Design of 
Structures,” Computational Mechanics, vol. 21, no. 6, pp. 483-492, 
1998. 
 

[4] J. Holland, “Adaptation in natural and artificial systems, “The 
University of Michigan, 1975. 

[5] J. A. Madeira, H. C. Rodrigues and H. Pina,  “Multiobjective topology 
optimization of structures using genetic algorithms with chromosome 
repairing,” Struct. Multidisc. Optim, vol. 32, pp. 31-39, 2006. 

[6] J. A. Madeira, H. Pina and H. C. Rodrigues, “GA topology optim 
ization using random keys for tree encoding of structures,” Struct. 
Multidisc. Optim, vol. 40, pp. 227-240, 2010. 

[7] M. J. Jakiela, C. Chapman, J. Duda, A. Adewuya and K. Saitou, 
“Continuum structural topology design with genetic algorithms,” 
Comput. Methods Appl. Mech. Engrg, vol. 186, pp. 339-356, 2000. 

[8] S.Y. Wang, K. Tai and M. Y. Wang, “An enhanced genetic algorithm 
for structural topology optimization,” Int. J. Numer. Meth. Engng, vol. 
65, pp. 18-44, 2006. 

[9] K. Tai and S. Akhtar, “Structural topology optimization using a genetic 
algorithm with a morphological geometric representation scheme,” 
Struct. Multidisc. Optim, vol. 30, pp. 113-127, 2005. 

[10] J. S. Choi and J. Yoo, “Structural topology optimization of magnetic 
actuators using genetic algorithms and on/off sensitivity,” IEEE 
Transaction on magnetics, vol. 45, no. 5, pp. 2276-2279, 2009.  

[11] R. Balamurugan, C. V. Ramakrishnan and N. Swaminathan, 
“Integrated optimal design of structures under multiple loads for 
topology and shape using genetic algorithm,” Engineering 
Computations:  International Journal for Computer-Aided Engineering 
and Software, vol. 23, no. 1, pp. 57-83, 2006. 

[12] D. W. Fanjoy and W. A. Crossley, “Topology design of planar 
cross-sections with a genetic algorithm: Part 1- overcoming the 
obstacles,” Eng. Opt, vol. 00, pp. 1-12, 2001. 

[13] D. E. Goldberg, “Genetic algorithms in search, optimization, and 
machine learning,” Reading: Addison Wesley, 1989. 

[14] A. R. Diaz and O. Sigmund, “Checkerboard patterns in layout 
optimization,” Structural Optimization, vol. 10, pp. 40-45, 2001. 

 

Proceedings of the World Congress on Engineering 2013 Vol III, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013


	I. INTRODUCTION
	II. Topology Optimization
	III. Application of GA to Solve Topology Optimization Problems
	IV. Numerical Example Problem
	V. Conclusions



