
 

 
Abstract— This paper presents a nonlinear control for a 

hydraulic actuator with significant nonlinearities. These are 
the key factors causing delay and error in the hydraulic 
actuation response and highly limit the performances of the 
classical linear control. Hence, a nonlinear control design 
based on the mathematical model of the hydraulic actuator is 
employed. 

The proposed approach consists of a nonlinear feedback 
control based on the state-dependent Riccati equation (SDRE). 
The control performance is demonstrated by both simulations 
and real-time experiments.  

The experimental results validate the proposed approach 
and highlight a good accordance with simulations. 
 

Index Terms— Hydraulic actuator, optimal control, SDRE, 
Riccati equation, nonlinear, tracking, real-time. 

I. INTRODUCTION 

YDRAULIC actuators employ hydraulic pressure to drive 
an output member. These are used where high speed 

and large forces are required. The fluid used in hydraulic 
actuator is highly incompressible so that pressure applied 
can be transmitted instantaneously to the attached member. 

Hydraulic components, because of their high speed and 
pressure  capabilities, can provide high power output with 
small weight and size in comparison to electric system 
components. Hydraulic actuators can be found in 
transportations, industrial machineries, seismic applications 
[1], and earth moving equipments. However, the dynamics 
of hydraulic systems are highly nonlinear [2] due to the 
pressure-flow rate relationship, the dead band of the control 
valve and the frictions.  These nonlinearities highly limit the 
performance achieved by the classical linear controller.  

In the past, much of the work in the control of hydraulic 
systems has used linear model [3] or local linearization of 
the nonlinear dynamics about the nominal operating point 
[4]. Suitable adaptive approaches are employed when there 
is no knowledge of the parameter values [5], [6]. In order to 
take system uncertainties into account, robust approaches 
can be adopted [7], [8]. In [9], a sliding mode control 
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applied to an asymmetric single-rod cylinder was presented.  
In this paper a SDRE-based control for a hydraulic 

actuator is proposed and applied to a hydraulic cylinder of a 
seismic test bench. The basic idea of the SDRE technique is 
to capture the nonlinearities by bringing the nonlinear 
system to a linear structure having state-dependent 
coefficient (SDC) matrices, and minimizing a nonlinear 
performance index having a quadratic-like structure [10]. 
The suboptimal control action can be obtained solving 
online an algebraic Riccati equation (ARE) using the SDC 
matrices [11]. 

This paper continues the work done in [12] and [13] and 
shows experimental results in order to validate the proposed 
nonlinear approach.   

The rest of the paper is organized as follows: a 
description of the proposed  control is given in Section II. In 
Section III the nonlinear model of the hydraulic actuator is 
derived and in Section IV the control has been 
particularized the specific system. Simulation results are 
reported in Section V and in Section VI the main 
experimental results are presented.  

II. SDRE FORMULATION 

Consider a nonlinear observable systems represented in 
general form by equations 

 
),( uxfx   (1) 

where nx   and mu  are the state and the control 
respectively. 

Assume that the origin is an equilibrium point and 
suppose that the dynamic model of the system can be placed 
in the SDC form 

 
uxBxxAx )()(  . (2) 

 
Consider the autonomous, infinite-horizon, nonlinear 

regulator problem of minimizing the performance index 
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with respect to the state x and the control u, subject to the 

nonlinear differential constraints (2); where 0Q  and 

0R  are symmetric weighting matrices. The SDRE control 
method provides an approximate nonlinear feedback 
solution of the above problem. The feedback gain equation 
is given as 
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where )(xP  is the symmetric, positive-definite solution 

of the SDRE of the form 
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The SDRE controller can be implemented as a 

servomechanism, similar to the that of a linear quadratic 
regulator [14]. Given a desired state trajectory dx , the 

SDRE servo control action is then given by 
 

))(()(T1
dSD xxxPxBRu   .            (6)

   

III. DYNAMICAL MODEL OF THE HYDRAULIC ACTUATION 

SYSTEM 

In order to describe the behaviour of the system, a set of 
differential equations is derived in the following. The 
hydraulic actuator under consideration consists of a double-
ended hydraulic cylinder driven by a four-way spool valve. 
The hydraulic cylinder is coupled to a mass that moves on 
linear guides (Fig. 1).  

For the derivation of the mathematical model, the 
following hypothesis have been adopted: a) fluid properties 
not depending on the temperature; b) equal piston areas; c) 
equal oil volume for each side (with the barrel in a central 
position); d) negligible internal and external fluid leakages; 
e) tank pressure equal to zero. The dynamics of the movable 
mass displacement (y) is governed by 

 

Lpf PAyFyym  )(σ  , (7) 

           
where m is the mass of the load,  σ is the viscous friction 

coefficient, Ff  is the friction force, Ap is the piston area, PL = 
PA-PB is the load pressure, PA and PB are the pressures 
inside the two chambers of the cylinder. 

The friction force is represented by the following 
equation 
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where Fc is the Coulomb friction force in the hydraulic 

actuator (assumed equal to its static value Fc0), μ is the 
Coulombian friction coefficient of the linear guides 
(assumed equal to its static value μ0), g is the gravitational 
acceleration and Z is the net tangential force that acts on the 
actuator when it is not moving [15]. 

The load pressure dynamics [2] is given by 
 

LpL QyAP
β

V
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0               (9)                    

   
 
where V0 is the volume of each chamber for the centered 

position of the piston, QL= (QA+QB)/2 is the load flow and β 
is the effective Bulk modulus. 

An overlapped four-way valve is considered: typically, 
this kind of valve is characterized by the lands of the spool 
greater than the annular parts of the valve body. 
Consequently, the flow rate is zero (dead band) when the 
spool is in the neighbourhood of its central position 

The load flow depends on the supply pressure, the load 
pressure and the valve spool position in accordance with the 
following 

 

LseeL PPvvΨQ  )(  (10) 

   
 
where ve is the displacement signal of the spool valve and 

Ψ(ve) is a variable gain functional to describe the valve dead 
band. 

The analytical expression of Ψ (ve) can be assumed as 
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where the pairs (ven, vep) and (kqn, kqp) are the dead band 

widths and the gains for the positive and negative spool 
displacement, respectively. The dead band nonlinearity is 
among the key factors causing delay and error in the 
hydraulic actuation response.  

The proportional valve dynamics can be well represented 
by a second order differential equation [16] 
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 (12)     

 
where parameters ωnv and ξv are the natural frequency and 

the damping ratio of the valve respectively,  ve0 is the spool 
position bias, ke is the input gain and u is the valve 
command. 
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Fig. 1. Schematic diagram of the hydraulic actuation system. 

 
Finally, the equations governing the dynamics of the 

whole system (movable mass + hydraulic system) are 
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The developed fifth order model fully describes the 

nonlinear dynamical behavior of the hydraulic actuation 
system and takes the nonlinear friction forces and the 
nonlinear flow rate distribution into account. 

The system (13) can be written in the following form 
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The system (14), represented in the state space form, is 

nonlinear in the state, autonomous and characterized by a 
fully known state by means of measurements.  

It is possible to note in the first and the third equation of 
(14) a division by the variable ve, as well as happens in (11). 
In order to  prevent divisions by zero, has been introduced a 
functional variable ε~  ee vv , where ε is given by: 
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where the value of ev  is chosen less than the minimum 

acceptable measurement error of the valve spool position ve. 
Substituting the variable ev~  into the fractions of (14) and 

(11) follows: 
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IV. PARAMETERIZATION OF THE SDRE CONTROL 

This section explains the design of the SDRE controller. 
The SDC parameterization has been performed using the 
highly nonlinear equations (16). 

The matrices in (2) have been chosen as follows: 
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where the state vector is  TeeL vvPyyx  .  

The matrix B does not depend on the state and is given 
by: 
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For the specific problem, without loss of generality, the 

goal of the tracking control is that the movable mass follows 
a desired displacement yd(t); therefore, the weighting 
matrices in (3) become: )0,0,0,,0( SDqdiagQ   and 

SDrR  , where SDq  and SDr  are two weighting 

coefficients. 

V. SIMULATION RESULTS 

In this section some simulation results, concerning the 
application of the proposed controller to a particular 
hydraulic actuation system presented in Section VI, are 
reported. The physical parameter values of the hydraulic 
actuator are: 
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These parameters have been obtained with a parameter 

identification technique [13].  
The controller is used for tracking sinusoidal motion 

trajectory characterized by an amplitude of 0.04 m and a 
frequency of 1 Hz.  

The simulation results reported in Fig. 2 consist of 
comparisons between the target and the effective movable 
mass displacement, the tracking error ( dyy  ) and the 

control action. 

 
Fig. 2. Simulation results of the nonlinear SDRE-based control. 

  

The maximum value of the tracking error is about 0.008 
m. The difference between the peak to peak amplitude of the 
effective displacement and the target one is about 0.001 m, 
and the actuation system phase lag is of 0.03 s.    

To verify the prediction capacity of simulation, the results 
reported in Fig. 2 will be compared with the experimental 
ones.  

VI. REAL-TIME EXPERIMENTS 

In order to test the effectiveness of the proposed 
nonlinear tracking controller, experimental studies are 
conducted on the hydraulic actuation system of the test rig 
shown in Fig. 3. 

A. The experimental test rig 

The experimental test rig is a machine utilized to perform 
shear tests on seismic isolators [17], [18]. The actuation 
system consists of a double-ended hydraulic actuator placed 
between a fixed base and a sliding table (1.8 m x 1.59 m). 
The hydraulic actuator is constituted by a mobile barrel, 
integral with the sliding table (A), and two piston rods 
linked to the fixed base (B) (Fig. 3).  

The isolator under test (C) is located between the sliding 
table and a slide that can move vertically with respect to the 
horizontal reaction structure (D). 

A hydraulic jack (E) is positioned between the vertical 
reaction structure (F) and the slide in order to make the 
isolator under test vertically loaded.  

The supply circuit of the hydraulic actuator is mainly 
constituted by an axial piston pump, powered by a 75 kW 
AC electric motor, a pressure relief valve and a four way-
three position proportional valve. The pump is characterized 
by a variable displacement and it is able to generate a 
maximum pressure of  210 bar and a maximum flow rate 
equal to 313 l/min. 

 

 
Fig. 3. Experimental test rig. 

 
The maximum horizontal force is 190 kN, the maximum 

speed is 2.2 m/s and the maximum stroke is 0.4 m (± 0.2 m). 
The removal of the reaction structures allows the testing 

machine to be used as a shaking table [19]. 
The full-state feedback has been obtained  with the  

following measurements: 
- table position by means of magnetostrictive position 

sensor (FS = 0.4 m - estimated uncertainty = ± 1.2e-4 
m); 

- pressure in the two chambers of the hydraulic 
cylinder by means of strain gauge sensor (FS = 400 
bar - estimated uncertainty = ± 1 bar); 

- valve spool position by means of built-in LVDT 
sensor; 

A dSPACE  DS1103 controller board, equipped with a 
16-bit A/D and D/A converter, has been used for the real-
time experiments.  All experiments have been conducted 
with a sample frequency of 1 kHz. To attenuate the 
influence of the noise, all measured signals are processed 
through a low-pass filter. The supplied pressure has been 
fixed to 6e6 Pa.   

B. Experimental Results 

The experiments on the seismic isolator testing machine 
have been conducted without the isolator to be characterize. 
Hence, the hydraulic actuation system has been utilized only 
for the sliding table positioning. 

For sake of comparison, the experimental validation of 
the proposed control has been obtained with the same target 
displacement imposed to the movable mass in the 
simulations.  

The problem of computing the SDRE feedback gains 
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reduces to solving (5). The  proposed approach is based on 
finding the eigenvalues of the associated Hamiltonian 
matrix [20] 
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The SDRE-based feedback gains have been obtained with 

a pole placement algorithm in terms of the stable 
eigenvalues of H(x). 

The SDRE feedback action has been implemented as a C-
code function downloaded to the controller board and 
implemented in real-time. 

In Fig. 4 are reported the experimental results in terms of 
the target and the experimental effective table displacement, 
the tracking error and the control action. 

 
Fig. 4. Experimental results of the nonlinear SDRE-based control. 

 
Analyzing the experimental results, it is possible to assert 

that the maximum amplitude error is equal to 3e-5 m and the 
actuator phase lag is equal to 0.035 s. Concerning the 
tracking error, its maximum value is equal to 0.009 m.   

The experimental results agrees with the results predicted 
in simulation environment.  

It has been experimentally demonstrated that the 
proposed nonlinear controller can achieve very good 
performance in terms of tracking control and stability.    

VII. CONCLUSION 

In this paper has been proposed an optimal control using 
the SDRE for a hydraulic actuator. A fifth order dynamic 
model of the system has been derived taking into account 
the typical nonlinearities of the hydraulic actuators. The 
parameterization of the SDRE feedback control has been 
obtained directly from the fifth order model. The real-time 
implementation of the SDRE nonlinear optimal problem has 
been performed with a pole placement algorithm in terms of 
the stable eigenvalues of the Hamiltonian matrix.  

Experiments have been conducted on the hydraulic 
actuation system equipped on a seismic isolator test rig. The 

experimental results validate the proposed approach and 
highlight a good accordance with simulation results. 
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