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Abstract—The primary resonance, stability and design 

methodology of a piecewise bilinear system under cubic velocity 
feedback control with a designed time delay are investigated. 
Through combining multi-scale perturbation method with 
Fourier expansion, the effects of time delay on dynamics 
behaviours are explored. Subsequently, the linearization of 
average equations obtained from analytical multi-scale method 
is applied to obtain the corresponding characteristic function, 
and thus stability boundaries can be determined.  In order to 
obtain the desired vibration control performance, appropriate 
gain and time delay of feedback are chosen based on the 
frequency response function and stability conditions. Lastly, the 
assessment of the influences of the feedback parameters on 
vibration transmissibility is given. Results show that both 
feedback gain and time delay are significant factors for altering 
dynamics behaviours and improving effectiveness of controller. 
 

Index Terms—vibration control, time delay, cubic velocity 
feedback, piecewise bilinear 
 

I. INTRODUCTION 

IBRATION isolation systems can be divided into three 
groups: passive, active and semi-active according to 
external energy requirement. The use of passive 

isolators is the most common method of controlling 
undesired vibrations in various engineering sectors such as 
aerospace engineering, transportation systems, marine 
engineering, civil engineering etc. [1-3]. The linear viscous 
damping is often introduced to reduce vibration amplitude at 
resonance for such a vibration isolation device. 
Unfortunately, the transmissibility increases with the 
damping in the frequency region where isolation is required.  
This is a dilemma that the passive vibration isolation 
technique faces [4]. But it could be solved by the active or 
semi-active control method such as direct linear velocity 
feedback strategy, which is recognized as a simple and robust 
method. The feedback controller generates an additional 
force which is proportional to velocity of the equipment, and 
thus it is sometimes referred to a skyhook damping for it 
reacts off the structure at required frequencies [5]. The 
outstanding virtue of on-off skyhook damping is that the 
resonance peak is reduced without affecting the vibration 
transmission at higher frequencies [6]. On the other hand, 
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conventional skyhook unfortunately introduces a sharp 
increase (jump or jerk often called in papers) in damping 
force, which, in turn, causes a jump in sprung-mass 
acceleration [7-9]. In order to figure out the dilemma of the 
design of passive linear damped vibration isolation and 
eliminate the acceleration jump induced by the sudden 
change of damping force, the present paper proposes an 
active controller of cubic velocity time-delayed feedback. By 
comparison with a passive device, the active controller is a 
practical approach to provide an exact cubic damping force 
as demanded. Besides, the feedback gain of the control 
strategy is fixed, not displacement- or velocity-dependent 
and consequently dynamics jerk induced by the sudden 
change of damping force could be avoided.  

But in real active control system, one of open problems is 
the complicated system dynamics induced by the 
unavoidable time delay in controllers and actuators, 
especially in various analogue filters. The downsides of the 
time delay on the stability and performance of a dynamics 
system has drawn a great deal of attention from researchers in 
structural dynamics engineering [10-14]. However, if 
designed properly, the time delay existed in controller could 
suppress bifurcations and improve vibration control [15,16]. 
This paper is to explore the dynamics of a bilinear vibration 
control system with cubic velocity time delay feedback and 
propose a proper design methodology for the controller. 

 

II. MULTI-SCALE ANALYSIS 

A. Frequency response 

Fig. 1 shows a single degree-of-freedom vibration 
system with an active vibration controller. Actually, the 
passive model of nonlinear stiffness and linear damping are 
abstracted from a solid and liquid mixture vibration (SALiM) 
isolator [17].  

 

 
Fig. 1 The active control system 

 
 
The equation of motion of a bilinear vibration control system 
with cubic velocity feedback can be represented by   
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where M, C1, tF cos  are mass, linear viscous damping 
coefficient and excitation force respectively. 

2C and denote the feedback gain and time delay involved in 

the control loop. The restoring force can be described by 
piecewise linear function with respect to the displacement, as  
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where ca  is the coordinate value of discontinuity point on 

displacement axis, and 1K , 2K are stiffness coefficients. 

Using the following dimensionless system parameters 
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Substituting those transformations into (2) yields 
dimensionless equation of motion 
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           (3) 
where dot denotes differentiation with respect to T , and the 
nonlinearity factor is defined as 
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To analyze the primary resonance of the system with 
time delay control given in Eq.(3) by using the multi-scale 
perturbation method combined with Fourier expansion, one 
confines the study to the case of small damping, weak 
nonlinearity, weak feedback and low level excitation [14], i.e. 
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For simplicity, first order approximate with two time scales is 
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then equating the same power of  produce 
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The solution of Eq. (8) is 
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Substituting (10) into (9) yields 
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where )( 10 TT   . In order to eliminating secular term 

in (11), the coefficients of basic harmonics sin and cos  

must be zero, i.e. 
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where 1A  and 2A  are the coefficients of basic harmonics of 

Fourier series of term )( 0xg . As can be seen in (5), )( 0xg  

is a piecewise linear function, thus the integral can be 
calculated in three intervals: ],0[ 0 , ]2,[ 00    and 

]2,2[ 0   , where 0  corresponds to the phase of 

discontinuity point in a vibration cycle.  
Then aD1  and 1D are obtained from (12) and (13) as 

follows 
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For a steady primary resonance, 011  DaD . Then 
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To verify the reliability of perturbation method, the 
nonlinear frequency response is also constructed by a fourth 
order Runge-Kutta scheme in association with a 
stepped-sine excitation and FFT technique. Fig. 2 compares 
the analytic displacement response and that from above 
stepped-sine simulation. There is an excellent agreement 
between analytical results and numerical references, 

especially in cases of 0 and
4

  . And what is most 

interesting is that a separate closed-loop of solution branch 
emerges above primary curve in Fig.2(c). But numerical 
simulation is not capable of producing the corresponding 
data. Similarly in Fig. 2(d), one still cannot obtain numerical 
data in the frequency band confined between vertical 
broken lines. In fact, the cause that those solution branches 
cannot be estimated by numerical integration is the 
instability, and this conclusion will be supported by stability 
analysis in the next section.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 2 Displacement frequency response of systems with different time 

delays (ξ1=0.03, ξ2=0.01, =0.6, f=0.1786): (a) 0 , (b)
4

  , (c) 

4

2  ,  (d) 
4

3
  . 

 
 
 
 
 

In fact, the additional closed-loop response curve in 
Fig.2(c) is due to multiple solution branches satisfying 

extremum condition of 0
d

d



a

in [18].  As can be seen from 

Fig. 2(c), there are three solution branches over the frequency 
band covering the frequency island. If two or three of 
branches are stable, a sudden jump could occur in the 
sine-sweep test. 

B. Stability boundary 

To analyse the stability of steady state primary 
resonance, linearizing Eqs. (14) and (15) with respect to   

and a  yields 
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Further, the characteristic equation of Eqs. (17) and (18) 
is 
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where, 1S , 2S , 3S , 4S , 2A and 2A are not given for brevity. 

From the Routh–Hurwitz criterion, the steady-state 
vibration is asymptotically stable if and only if the following 
two inequalities hold simultaneously 
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As a matter of fact, if condition Eq.(20) stands up but 
inequality (21) does not hold, the response is unstable due to 
the occurrence of saddle-node bifurcation, which means that 
the jump phenomenon could happen. If 01  , the dynamics 

response of vibration system will diverge despite Eq.(21) 
holds or not. Actually, the stability boundary 01   

indicates the critical condition that the sign of real parts of 
both roots of characteristic equation changes. A change from 
negative real parts to positive real parts indicates the presence 
of a supercritical Hopf bifurcation [12]. For the uncontrolled 

system only with the positive damping, 0ˆ2 11   , and 

hence Hopf bifurcation is excluded.  
Fig. 3 shows the unstable regions of primary resonance 

responses for systems with different time delays. The parts of 
curves covered by shaded regions represent unstable 
solutions. 
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(a) 

 
(b) 

 
Fig. 3 Frequency response and stability boundary.  

(a) 
4

2  , (b) 
4

3
   

In the case of time delay 
4

2  , both stability 

boundaries 1 and 2 are obtained from Eq.(21) and boundary 3 
is given by Eq.(20). It is obvious that the entire closed curve 
solution is covered by a shaded unstable region confined by 

the boundary 3. For the system with time delay 
4

3  , 

Eqs.(21) and (20) produce stability boundaries 1 and 2 
respectively, and the upper of the frequency response curve is 
cut off by boundary 2. As a matter of fact, those unstable 
solutions cannot be obtained by numerical simulation. Thus 
the missing parts of the frequency responses curve in Fig.2 
can be illustrated in this way. 
 

III. SELECTION OF FEEDBACK PARAMETERS ( 2 , ) 

Based on the preceding work, one is ready to do 
quantitative analysis on how the feedback parameters (time 
delay and gain) affect the vibration level from the view of 
vibration control. Since the nonlinear system behaviours can 
be influenced by the controller’s feedback parameters, one 
can manipulates the dynamic response of the nonlinear 
system by forcing the selected time delay and feedback gain 
of the controller. This will be the task of nonlinear system 
vibration control with cubic velocity feedback and time 
delay.  

Fig.4 shows the influence of time delay   on the 
vibration amplitude for a given system. The solid line 
determined by Eq.(20) depicts the variation of amplitude as 
time delay increases, and the broken line indicates stability 
boundary 1 . Compared with controlled system with time 

delay ( 0 ), the controlled system without time delay 
( 0 ) can produce lower displacement amplitude. On the 

other hand, from the comparison between Fig.4 (a) and (b), it 
is clear that the stronger feedback gain 2  brings down the 

vibration amplitude, but shrinks the stable region. In the case 
of 1.02   (Fig. 4(b)), some parts of the responses are 

rounded up in unstable regions leading to unstable responses. 
Hp1, Hp2 Hp3 and Hp4 indicate the positions where the 

Hopf bifurcation occurs, and the solid lines between 
Hp1-Hp2 and Hp3-Hp4 are unstable response branches. For 
example, the time response as 0.1  is a steady state 
vibration (see Fig. 5(a)), and on the contrast, the response as 

0.3   which is between Hp1 and Hp2 is divergent, as 
shown in Fig.5(b). The numerical results are obtained by the 
four-order Runge-Kutta method. 

(a) 

 
(b) 

 
Fig. 4  For a system with different gains, effect of time delay on vibration 

amplitude and stability boundary 1 . 

(a) 

 
(b) 

 
Fig. 5 Numerical time response: (a) 0.1 ; (b) 0.3 . 
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For a vibration control system, the maximum 
displacement amplitude is usually suppressed under a target 
level. Since the maximum displacement depends on the 
feedback parameters, how to choose gain 2  and feedback 

time delay   will be expatiated by an example. Given the 
system with parameters (f=0.1786; =0.6, =1), the design 
procedure is to aim the control target of the dimensionless 
amplitude limit da <1.2. Firstly, it is straightforward to 

determine the division line in parameter plane ( 2 , ) like 

those in Fig.6 using the frequency response Eq.(20). In Fig.6, 
the dashdotted, broken and solid lines represent the division 
of da =1.2 corresponding to dimensionless linear damping 

coefficients ξ1=0.03, 0.05 and 0.07. The whole plane is 
divided into two parts by the division line, and on the upper 
plane, the displacement amplitude governed by parameter 
pair ( 2 ,  ) is less than the specified limit value. 

Unfortunately, not all parameter pairs located in the upper 
part satisfy the stability conditions. Hence, it is necessary to 
identify the corresponding stability boundaries as shown in 
Fig. 6, which could exclude those feedback parameters 
falling in the unstable region. As shown in the figure, the 
solid lines respectively with triangle square and circle are 
three stability boundaries related to linear damping 
coefficient ξ1=0.03, 0.05 and 0.07, and the regions encircled 
by stability curves represent inappropriate parameter pairs. 

 
Fig. 6. Design illustration of feedback gain and time delay (dash-dotted, 

broken and solid lines correspond to the case of ξ1=0.03，0.05 and 0.07 
respectively. Solid lines with triangle, square and circle are corresponding 
stability boundaries determined by Eq.(39) )  

 

IV. SOME SIMPLE ILLUSTRATIONS ON TRANSMISSIBILITY 

Once the desired control feedback is determined, it is a 
straightforward step to evaluate the effectiveness of vibration 
control system, and the performance characteristics of the 
control system are dependent on four parameters: 
nonlinearity factor  , nondimensional linear damping ratio 

1 , nondimensional nonlinear damping ratio 2  and 

nondimensional time delay  . The theme of following 

discussion focuses on influence of 1 , 2 and   on 

vibration isolation performance, i.e. force transmissibility 

fT  which is determined by the ratio of  maximum output 

force to  maximum excitation force. The Runge-Kutta 
algorithm is employed again to estimate force 
transmissibility and how the force transmissibility changes 
with system parameters. The results are given in Fig. 7-9.  

 
Fig. 7  Effect of linear damping on vibration transmissibility for the 

uncontrolled system. 

Fig. 7 shows the variation of transmissibility as the 
linear damping coefficient increases. As one might expect, 
the increase of linear damping reduces the transmissibility 
peak and consequently suppress the vibration in resonance 
region. However, the dilemma occurs that the increase of 1  

is detrimental for vibration control in frequency band where 
isolation is required. 

 
Fig. 8 Effect of cubic nonlinear damping on force transmissibility for 

controlled systems. 

For controlled system without time delay, Fig. 8 
compares the effect of feedback gain on the force 
transmissibility between three cases of 02  , 0.8 and 4.0. It 

is manifest that the increase of feedback gain can not only 
reduce transmissibility and suppress vibration in resonance 
region but keep them unchanged over higher frequency 
range. Therefore, cubic velocity feedback breaks through the 
barrier existing in the passive vibration control system with 
linear damping. 

 
Fig. 9 Effect of time delay on vibration transmissibility for controlled 

systems.  

   When time delay is considered, the situation becomes a 
little different and more complicated, as shown in Fig. 9. As 
be seen, the resonance peak shifts towards to higher 
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frequency direction as the time delay increases. And what is 
worse is that transmissibility peak rises.  

In fact, there are two interesting cases of systems in 
terms of response property: the first is that the maximum 
amplitude is below the critical displacement point, i.e. 1a . 
In this case, the adverse influence of time delay on 
transmissibility peak has been shown in Fig. 9 and thus the 
control scheme with very small time delay is preferable to 
control vibration. The results illustrated in Figs.7 and 8 
correspond to the case as well. The second is that the break 
point is crossed, i.e. 1a , and the vibrating system exhibits 
softening stiffness property. On this condition, the time delay 
might exhibit its favorable effect on the vibration 
transmissibility. In Fig.10, the dot line shows the emergence 
of jump phenomenon induced by the piecewise linear 
stiffness. As can be seen interestingly, the jump disappears as 
time delay increases and transmissibility peaks are almost 
same.  

 
Fig. 10 Effect of time delay on vibration transmissibility for controlled 

systems in case of 1a  

 

V. CONCLUSIONS 

In this article, a controlled vibration system with piecewise 
linear stiffness and cubic velocity feedback has been 
considered from aspects of its primary resonance analysis, 
concept design of feedback parameters and vibration 
transmissibility. Several conclusions are summarized as 
follows: 
1) The frequency response of the system has been found 

analytically by utilizing the multi-scale method. It has 
been shown that the multi-scale analysis works well the 
time-delayed controlled system with piecewise linear 
stiffness described in Figure 1. The accuracy of solution 
was limited to time delay involved in the feedback loop.  

2) To control the vibration level below a specified value, 
the two feedback parameters are examined on the 
frequency response and stability boundaries which must 
be complied to exclude the feedback parameter values 
that might cause unstable system behaviour.  

3) It is found that the gain can not only reduce the whole 
force transmissibility level and greatly suppress 
vibration in region resonance, but also can keep the 
transmissibility unchanged over higher frequency range 
where vibration isolation is required.  

4) The jump phenomenon in sine-sweep test could be 
avoided by appropriate time delay, as can be seen in 
Fig.10.  

5)  Meanwhile the jerks induced by sudden change of 
damping force in conventional skyhook can be avoided 
due to the smoothly imposed control force.  
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