
Threshold of Isoperimetric Ratio based on
Compressibility via Invertible Affine

Transformations
Toshio Suzuki, Member, IAENG, and Yuji Hatakeyama

Abstract—The isoperimetric ratio of a given planar closed
curve is the ratio of the square of the perimeter to the area.
We show the following theorem: (1) Any convex quadrilateral
is affine-equivalent to a quadrilateral whose isoperimetric ratio
is less than 20.784. (2) The above result is optimal. And, we
propose to use 20.784 as a threshold when we judge that a
given polygon is not a succinct quadrilateral. In particular, we
illustrate which shapes have larger isoperimetric ratio than the
threshold 20.784, with real street patterns. Finally, we discuss
possible application to complexity measure of street patterns.

Index Terms—affine transformation; isoperimetric ratio; el-
ementary geometry; threshold; street pattern.

I. INTRODUCTION

THE isoperimetric problem asks, given a length of
perimeter, the maximum area that such a perimeter

surrounds. The problem begins in ancient Greek mathemat-
ics, and rigorous theory is developed in 19th century. Fore
more precise, see [3], [6]. Given a planar closed curve, we
consider the isoperimetric ratio; It is defiend to be the ratio of
the square of the perimeter to the area that surrounds. The
isoperimetric ratio is invariant under similarity transforma-
tion. In psychology and engineering, the isoperimetric ratio
is used as a complexity measure of a figure. For example,
see [1], [2] and [7].

It is well-known that the minimum of the isoperimetric
ratio is achieved by a circle. Note that, in our setting,
the numerator of the ratio is the square of the perimeter.
Thus, unlike the case where the numerator is the area, the
isoperimetric ratio of a circle is not the maximum but the
minimum.

Now, we investigate the opposite direction; We investigate
an upper bound of the isoperimetric ratio, under the setting
that we can compress a given shape by invertible affine
transformations.

As a main result, we prove the following theorem in
section III:

(1) Any convex quadrilateral is affine equivalent to a
quadrilateral whose isoperimetric ratio is less than 12

√
3 �

20.784.
(2) The above result is optimal; We cannot replace 12

√
3

by a smaller number.
Here, 12

√
3 is the isoperimetric ratio of a regular triangle.
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In section IV, with real street patterns, we illustrate which
shapes have larger isoperimetric ratio than the threshold
12

√
3.

II. NOTATION

A. Isoperimetric ratio
Definition 1. Suppose that γ is a convex polygon in the
plane. The isoperimetric ratio of γ is the ratio of the squared
length of γ to the area γ surrounds. We denote the isoperi-
metric ratio by I(γ). That is, I(γ) = (perimeter)2/(area).

We remark that the definitions of the terminology “isoperi-
metric ratio” or “isoperimetric quotient” slightly differ de-
pending on literatures. In particular, they may be defined as
to be the reciprocal of ours. For example, in some literature,
4π × (area)/(perimeter)2 is called isoperimetric quotient.

In the remainder of this section, we review concepts of an
affine transformation and uniform convergence.

B. Affine transformation
A transformation on xy plane is called an affine transfor-

mation on xy plane if it is sum of a linear transformation
and a translation. In other words, a transformation f is an
affine transformation if it is of the following form, where
ai,j and bi are real numbers.

f

(
x
y

)
=

(
a1,1 a1,2
a2,1 a2,2

)(
x
y

)
+

(
b1
b2

)
(1)

We say f is invertible (also called regular) if so is the
linear mapping part, that is, a1,1a2,2 − a1,2a2,1 �= 0.

Two polygons γ and γ′ are affine-equivalent if there exists
an invertible affine transformation f such that γ′ is the image
of γ by f . More precisely, regarding γ and γ′ as point sets,
it holds that γ′ = {f(x) : x ∈ γ}.

We observe some examples. Any triangle is affine-
equivalent to a regular triangle. It achieves isoperimetric
ratio 12

√
3, which is the minimum among all triangles. Any

parallelogram is affine-equivalent to a square. It achieves
isoperimetric ratio 16, the minimum among all quadrilaterals.
The supremum of isoperimetric ratio among all quadrilaterals
is infinity; To verify this, consider a rectangle such that the
ratio of length of shorter edge to that of longer edge is 1 to
n, and take limit of n → ∞.

C. Uniform convergence
A statement “If x approaches to a then g(x, y, z) converges

to b uniformly with respect to y and z” denotes the following:
“For any ε > 0, there exists a δ > 0, where the choice of δ
does not depend on y and z, such that for every x, y and z,
if 0 < |x− a| < δ then |g(x, y, z)− b| < ε.”

Proceedings of the World Congress on Engineering 2013 Vol I, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19251-0-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



III. THEORY

In this section, we show our main theorem.

Theorem 1. 1) For any convex quadrilateral γ, there ex-
ists a quadrilateral γ ′ such that γ ′ is affine equivalent
to γ and such that I(γ ′) < 12

√
3.

2) The upper bound 12
√
3 in the above statement is

optimal. More precisely, for any positive real number
ε, there exists a convex quadrilateral γ such that for
any quadrilateral γ′ that is affine-equivalent to γ, it
holds that I(γ′) > 12

√
3− ε.

Proof: 1. In xy plane, consider four points O(0, 0),
A(1, 0), B(1/2,

√
3/2) and C(3/2,

√
3/2) (Fig. 1). Without

loss of generality, we may assume that a given convex
quadrilateral is OAXB, where the point X is on the triangle
ABC and X is not on the segment AB.

O                           A

B                           C

X

Y

Fig. 1. O(0, 0), A(1, 0), B(1/2,
√
3/2) and C(3/2,

√
3/2)

Consider the segment pararell to AB on which X is.
Suppose that the segment intersects AC at a point Y .

Then, the isoperimetric ratio of the quadrilateral OAXB
is not greater than that of the quadrilateral OAY B. Let t(0 <
t ≤ 1) be the length of AY . Then, the isoperimetric ratio of
OAY B is not greater than the followoing.

(3 + t)2

(1 + t)
√
3/4

=
4
√
3

3
{(t+ 1) + 4 + 4/(t+ 1)} (2)

Now, (t + 1) + 4/(t + 1) is decreasing in the interval
0 < t < 1, and therefore it is less than (0+1)+4/(0+1) = 5.
Thus, (2) is less than 12

√
3. Hence, the first assertion of the

theorem holds.
2. Consider a triangle OBC. Take points A on OB and D

on OC so that the ratios of lengths OA/OB and OD/OC
have the same value; Let � > 0 be the value. (Fig. 2).

O     A                   B

C

D

Fig. 2. OA/OB = OD/OC = � → 0+

If � → 0+ then the isoperimetric ratio of ABCD
converges to the isoperimetric ratio of OBC. And, the

convergence is uniform with respect to the angle BOC and
the ratio OC/OB.

In addition, the minimum of the isoperimetric ratio of the
triangle OBC is achieved when it is a regular triangle.

Hence, the second assertion of the theorem holds.

IV. PRACTICE

We illustrate, with real street patterns, which shapes have
larger isoperimetric ratio than the threshold 12

√
3. The black

pixels in Fig. 3, except for those consisting the canvas frame,
are center lines of roads.

Fig. 3. Kyoto (1), before processing

We do the following procedure. Here, a block denotes a
region surrounded by a closed curve.

STEP 1. Remove all blind alleys.
STEP 2. For each block

if (the isoperimetric ratio ≥ 12
√
3)

{ Paint out it black. }

STEP 1 is just for making the issue simpler. In the case
of Fig. 3, we have no blind alleys. The result of the above
procedure is Figure 4.

Fig. 4. Kyoto (1), after processing (8.6%)

The percentage in the caption (8.6%) denotes the ratio of
black pixels in the canvas. In the same way, we apply the
procedure to some figures. All the figures of street patterns
in this section are drawn on the same scale. Fig. 3 and Fig. 5
are clipped out of Kyoto [5]. Other figures of odd numbers
≥ 7 are clipped out of Tokyo [4]. Among them, Fig. 7,
Fig. 9 and Fig. 11 are clipped out of areas which had land
readjustments.
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Fig. 5. Kyoto (2), before processing

Fig. 6. Kyoto (2), after processing (27%)

Fig. 7. Tokyo (1), before processing

Fig. 8. Tokyo (1), after processing (27%)

Fig. 9. Tokyo (2), before processing

Fig. 10. Tokyo (2), after processing (32%)

Fig. 11. Tokyo (3), before processing

Fig. 12. Tokyo (3), after processing (34%)
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Fig. 13. Tokyo (4), before processing

Fig. 14. Tokyo (4), after processing (45%)

Fig. 15. Tokyo (5), before processing

Fig. 16. Tokyo (5), after processing (51%)

Fig. 17. Tokyo (6), before processing

Fig. 18. Tokyo (6), after processing (53%)

Fig. 19. Tokyo (7), before processing

Fig. 20. Tokyo (7), after processing (60%)
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Fig. 21. Tokyo (8), before processing

Fig. 22. Tokyo (8), after processing (65%)

V. DISCUSSION

Suppose we have a closed curve γ approximately equal
to a polygon. If γ has an isoperimetric ratio greater than or
equal to 12

√
3, we may conclude that either (Case 1) γ is

not approximately equal to a convex quadrilateral, or (Case
2) γ is approximately equal to a convex quadrilateral such
that we can reduce its isoperimetric ratio via an invertible
affine transformation.

Thus, informally speaking, if a shape γ has an isoperimet-
ric ratio greater than or equal to 12

√
3, we may conclude

that γ is not (a shape approximately equal to) a succinct
quadrilateral.

On the other hand, if γ has an isoperimetric ratio less
than 12

√
3, we do not get a definite conclusion on γ by this

method.
As examples of shapes approximately equal to polygons,

we observed some real street patterns in the former section.
The percentage of black pixels in each processed square

region is approximately equal to the probability of a ran-
domly chosen point, from the square region, being included
in a street block whose isoperimetric ratio is greater than or
equal to 12

√
3. In the examples of the former section, the

range of percentages is 8.6%–65%.
A prospective application is to find the percentage of black

pixels for a town or a ward. Although a town does not
have a boundary of a square shape in general, in the same
way as the examples of the former section, we can find the
percentage for a town, and we can visualize the percentage in
a monochrome picture. An administrative organ would utilize
the percentage as an index (naturally, with other indices)
showing priority of land readjustment.

VI. CONCLUSIONS AND SUMMARY

The isoperimetric ratio denotes the ratio of the square
of the perimeter to the area. Note that, in our setting, the
isoperimetric ratio achieved by a circle is not the maximum
but the minimum.

In this paper, we observed an elementary but interesting
theorem on an upper bound of isoperimetric ratio; Any
convex quadrilateral can be compressed, via an invertible
affine transformation, to a quadrilateral whose isoperimetric
ratio is less than that of a regular triangle. And, this result
is optimal.

In the discussion session, we proposed to use the isoperi-
metric ratio of a regular triangle as a threshold when we
judge that a given polygon is not a succinct quadrilateral.
Based on examples clipped out of real street patterns, we
conclude that the percentage of black pixels has a prospective
application to complexity measure of street patterns, where
the percentage equals to the probability of a randomly chosen
point being included in a block that exceeds the threshold.
In addition, it is a merit of our method that the complexity
measure is visualized by a monochrome picture.
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