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Abstract—Fluid mechanics and heat transfer of a power law 

non Newtonian binary alloy are described inside the annular 
space between concentric horizontal cylinders. Liquid to solid 
phase transformation, originated by external forced convective 
cooling through the thick walls of the cylindrical mold is 
described by a temperature dependent liquid phase change 
fraction. Governing nonlinear coupled continuity, linear 
momentum and energy partial differential equations are solved 
by using the finite volume method. Effects of Grashof number 
and radii ratio are investigated for pseudo plastics (n=0.2) and 
dilatant (n=1.5) flow behaviors of the Al-1.7wt%Si alloy. 
Results for the time evolution of velocity, streamlines and 
temperature are presented for both Newtonian and non-
Newtonian cases. The presence of multicellular flows is found 
to increase as the power law index decreased from 1.0, and the 
Rayleigh number and the radii ratio increased, causing a faster 
solidification process. 
 

Index Terms—Phase change, transient conjugate convection, 
Finite Volume Method. 
 

I. INTRODUCTION 

 OLAR thermal energy storage, food freezing/thawing, 
polymer injection molding, metals and alloys 

solidification are examples of important industrial 
applications processes based on liquid-solid phase changes 
in which non Newtonian fluids are often used. 

A large number of important contributions to explain the 
essentials of solidification of metals and alloys at macro and 
micro scales have been published [1-9]. Shyy et al. [ 10] and 
Samarskii et al. [11] have described the most often used 
computational techniques for solving heat and mass transfer 
problems with solid/liquid phase change with moving 
boundaries. A review of the theoretical knowledge required 
for the development of solidification models and numerical 
methods to solve them has been reported by Voller [12]. 

 
The objective of this work is to describe the time 
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evolution of fluid mechanics and heat transfer for non-
Newtonian pseudo plastic and dilatant power law fluids 
undergoing inward annular solidification processes between 
two concentric thick walled horizontal cylinders. External 
inner and outer forced convection originates the transient 
motion of a binary alloy by natural convection inside a 
cylindrical mold in which conduction in the walls is 
included. The liquid to solid phase transformation is 
described by a liquid phase fraction that varies linearly with 
temperature. The effects of Rayleigh number Ra and radii 
ratio R on the time evolution of velocity and temperature 
distributions are investigated for pseudo plastic and dilatant 
fluids in comparison with the results corresponding to the 
Newtonian fluid assumption for the alloy in the mushy zone 
and in the liquid phase.  

II. PHYSICAL AND MATHEMATICAL MODELS 

The solidification process occurs in a horizontal 
cylindrical mold made out of two concentric thick graphite 
cylinders. Initially, a binary alloy, at a temperature higher 
than the liquids temperature, starts to being cooled down by 
external convection in both inner and outer mold surfaces, 
as it is schematically shown in figure 1. The rheological 
relation between shear stress and deformation rate of the 
alloy is described by the power law model for pseudo plastic 
(n < 1) and dilatant fluids (n > 1). 

Considering a very long thick walled mold, a two-
dimensional, transient mathematical model can be 
formulated to predict unsteady fluid mechanics and heat 
transfer. Buoyancy forces are taken into account based on 
the Boussinesq approximation and the power law model is 
used to relate shear stresses with the deformation rate. The 
basic governing equations that describe the fluid mechanics 
and heat transfer are: 

 
Continuity equation: 
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Linear momentum equation in , 
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Fig. 1.  Alloy annular cylindrical solidification in a graphite mold. 
  

 

Linear momentum equation in r, 
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Energy equation, 
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The liquid phase change fraction is considered to vary 

linearly with temperature 13, 
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The apparent viscosity for a non-Newtonian power law 

fluid is defined as 
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where the deformation rate, according to the Power Law 
fluid model, was calculated from the following expression: 
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Conduction in the mold walls was predicted by the 
asymptotic expression of equation 4 in which the two 
velocity components and the solidification enthalpy L are 
equal to zero and the physical properties of the graphite 
mold are used instead of the alloy properties. 

Initial conditions include that the liquid alloy is at rest at 
an initial temperature higher than the liquid temperature TL. 
Convective boundary conditions are imposed at the inner 
and outer surfaces of the cylindrical horizontal mold and 
symmetry is imposed at θ = 0 and at θ = 180º, 
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IV. SOLUTION PROCEDURE 

Governing equations 1 to 4 were cast into the general 
transport equation and solved with the finite volume 
method. Pressure-velocity-temperature coupling was 
implemented by the SIMPLE algorithm. A fixed non 
uniform staggered grid, 100x60 nodes, was used with scalar 
quantities (temperature and pressure) being calculated at the 
node center and vectors (velocity and heat fluxes) at the 
node surfaces. Time derivatives were calculated by forward 
differences, diffusion terms by linear interpolation functions 
and convective terms by the fifth power law [14]. 

A dynamic time step was used in the calculations in 
which 0.00001 s� �t �0.005 s. In the first iteration a 
Newtonian behavior of the fluid was assumed to calculate 
the apparent viscosity and the pressure gradient was 
adjusted to the one of the non-Newtonian fluid [15]. The 
under-relaxation coefficients used to correct the primitive 
dependent variables were: 

1.0u , 1.0v , 3.0P , 5.0T  (10) 

The convergence criteria applied to stop the velocity and 
the temperature calculations at each time step was based on 
the maximum value of the difference between the values 
calculated in two successive iterations, 
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A maximum allowed error of 10-2 was imposed for 
temperature and 10-6 for velocity. 

V. RESULTS AND DISCUSSION 

Al-1.7wt%Si was the binary alloy for the case studied. 
Properties of the alloy are presented in Table 1. The 
properties of the graphite mold in the calculations were 
density ρ = 1.922 kg/m3, thermal conductivity k = 96.29 
W/mK and specific heat cp = 1,217.5J/kgK. The power 
index used was n = 0.5, 1.0 and 1.5, as it has been 
experimentally found for similar binary alloys [16]. 

TABLE I 
PROPERTIES OF AL-1.7WT%SI ALLOY USED IN THE CALCULATIONS 

Symbol Quantity               Values 

ρ Density 2,650 kg/m3 

Cp specific heat  1,058 J/kg °C

K thermal conductivity 229.44 W/m °C 
L phase change heat 397,746 J/kg 

TS solidus temperature 550 °C 

TL liquidus temperature 650 °C 

K fluid consistency 3.233x10-3 kg/s 

β thermal expansion coefficient 13.84 x10-5 1/°C 

To reference temperature 200 °C 

 

Maximum temperature evolution at the end of the 
solidification process is shown at figure 2 for the Newtonian 
fluid (n=1) and the pseudo plastic fluid with n=0.5. As the 
power law index decreases the cooling process and the 
solidification is faster and lower maximum temperatures are 
observed: 

 
 

 

 

 
Fig. 2. Evolution of maximum temperatures for 

Newtonian and pseudo plastic fluid for     three aspect 
ratios: a) R=1.33, b) R=1.77, c) R=2. 

 
Tangential and radial velocity profiles are shown in figure 

3 for the three planes indicated in figure1. At a time equal to 
1s the three planes have almost the same tangential velocity 
distribution while the radial component, one order of 
magnitude lower, has different trends in the three planes. At 
a longer time, t = 8s, the tangential velocity is different at 
the three planes, reaching higher values towards the outer 
cylindrical wall while the radial velocity is higher for the 
plane B located at 90º. 

Figure 4 shows that natural convection is enhanced as the 
Ra value is increased. A multicellular flow is found at a 
time equal to 1,100 s when Ra is higher. An increment of 
two orders of magnitude on Ra is seen to cause a faster 
cooling by about 10K at the end of the solidification 
process.  

The pseudo plastic fluid with n = 0.5 exhibits in figure 5 a 
faster motion, with a more active flow recirculation 
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circulation with respect to the Newtonian fluid with n =1. 
Small changes on the shape of isotherms are observed when 
n increases from 0.5 to 1.0. 

 
 

 
Fig. 3. Tangential and radial velocity in annular 
solidification for R=1.77 and Ra=8.69 x 1010. 
 
 
 
 
 
 
 
 
 
 

 
 
 

   Streamlines ψ Isotherms θ 

 
Ra = 2.85x1011 2.85x109 2.85 x 1011 2.85 x 109

 
Fig. 4. Rayleigh number effect on ψ and θ, for R=2, n=1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Proceedings of the World Congress on Engineering 2013 Vol III, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



 

 

  Streamlines ψ Isotherms θ 

 
           n = 1.0 n = 0.5 n = 1.0 n = 0.5 

 
Fig. 5. Power index n effect on ψ and θ for Ra = 2.85 x 109. 

VI. RESULTS AND DISCUSSION 

 Solidification with natural convection for a non-
Newtonian Al-Si 1.7% alloy of the Otswald de Waele type 
in the annular space between two horizontal concentric 
cylinders exhibits highest velocities at the beginning in 
materials with pseudo plastic behavior (n=0.5). The 
solidification process is faster when n= 0.5 than when it is 
Newtonian (n=1) or when a dilatant fluid model is used 
(n=1.5). Multicellular flow is enhanced as the Rayleigh 
number increased. Prediction with the finite volume method 
can be made using non-uniform grids with 100 x 60 nodes 
and dynamic time paths in the range 1x10-5s ≤ ∆t ≤ 0.005s. 
CPU times increased ten times for the pseudo plastic fluid 
or for the highest Ra. 
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