
 

Abstract---For improved estimation of oxygen tension in 
retinal blood vessels, regularization of least squares estimation 
method was proposed earlier and it was shown to be very 
effective. Optimum points of the regularized least squares 
(RLS) cost function were found using iterative methods and 
closed form solutions for the estimation, and bias and variance 
of the estimators were not provided. In this study, we derive 
the closed form solution for the RLS estimation and using the 
closed form solution we derive bias and variance of the RLS 
estimator. With the help of the bias and variance, statistical 
performance analyses of the RLS estimator are realized 
without the need of the Monte Carlo simulations and effective 
examinations of the regularization parameters on the 
performance become available. Therefore, preferable ranges 
for the parameters that can be adjusted during the acquisition 
and estimation can be found easily to have enhanced estimates. 

 
Index Terms---performance analysis, bias and variance, 

regularized estimation, retinal oxygenation. 
 

I. INTRODUCTION 

Accurate estimation of oxygen tension (pO2) in retinal 
vessels is of primary importance since abnormality of 
oxygenation in retinal tissue, in many cases, gives important 
clues regarding devastating common eye diseases such as 
diabetic retinopathy, glaucoma, and age related macular 
degeneration [1]-[2]. Oxygen tension of retinal vessels can 
be estimated using phosphorescence lifetime imaging model 
(PLIM) [3]-[4] whose mathematical model was developed 
by Lakowicz et al. [5] for fluorescence lifetime imaging 
model (FLIM). In [3]-[4], the least squares (LS) estimation 
method was used to obtain estimate of oxygen tension in 
retinal vessels using PLIM. While the LS estimation 
method is efficient in the computation sense, it produces 
high variance, and artificial peaks in the estimates, and 
therefore gives values outside of the physiological range. In 
order to overcome these shortcomings, regularization of the 
LS estimation method was proposed by Yildirim et. al. [6]. 

Regularization has been extensively used in several 
problems such as image processing [7-9], biomedical 
imaging [10-13], and astronomical imaging [14] and its 
success in many problems was the main motivation of 
Yildirim et al. [6] to develop a RLS estimation method in 
the estimation of oxygen tension in retinal vessels 
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In their study, after considering the physiology of retinal 

tissue in which oxygen tension of a retinal vessel does not 
vary rapidly in a small neighborhood [15], they assumed 
that mean value of a pixel value in an oxygen tension map 
of retinal blood vessel can be formulated as equal to 
weighted mean of oxygen tension values of its neighboring 
pixels. It was shown that their RLS method is much better 
than the LS estimation approach in many senses such as 
robustness to noise, having much less variance, obtaining 
smoother pO2 maps and therefore generating pO2 values 
which are in the physiologically expected range. However, 
in their study, iterative procedures such as steepest descent 
algorithm were used to find minimum of the RLS cost 
function and a closed form solution was not provided.  Bias 
and variance of the estimator were also estimated using 
some Monte-Carlo simulations.  

In this study, we derive bias and variance of the RLS 
estimator after obtaining closed form solution of RLS 
estimation method proposed in [6]. With the help of the bias 
and variance of the RLS estimator, we examined and 
showed the effects of the regularization parameters, window 
size and weighting coefficients of neighboring pixels, which 
are used in formation of regularization term in the model, 
and phosphorescence observation number on the statistical 
performance of the estimator. Considering the outcomes of 
the analyses, we give the preferable ranges for the 
parameters that can be controlled to generate the pO2 maps. 

 

II. DERIVATION OF THE CLOSED FORM SOLUTION 
FOR THE RLS ESTIMATION 

Phosphorescence intensity observation images are 
represented in a vector form by reordering the matrix 
elements column wise. For the ith pixel, the RLS cost 
function can be given as follows: 

     ܿோ௅ௌ
௜ ൌ 	 ฮ࢏࢟ 	െ ฮ࢏࢞࡭	

ଶ

ଶ
൅ ࢏࢞ฮߛ 	െ	࢞ഥ࢏ฮ

ଶ

ଶ
,  (1) 

where	ߛ ,࢏࢟ and ࡭ stand for noise corrupted observation 
vector, regularization coefficient and the system matrix 
(see Appendix A). Additionally, the parameter to be 
estimated	࢞௜ and its mean ࢞ഥ࢏	are as follows: 

௜࢞ ൌ ൣܽ଴
௜ 			ܽଵ

௜ 			ܾଵ
௜ ൧
்
 and 

ഥ௜࢞ ൌ ሾࡷሺ݅, : ሻࢇ଴				ࡷሺ݅, : ሻࢇଵ				ࡷሺ݅, : ሻ࢈ଵ	ሿ்,  (2) 

where	ࢇ଴, ࢇଵ and ࢈ଵ are vectorized parameter values and K 
is weighted mean averaging matrix defining interrelations 
between pixels’ ࢇ଴ , ࢇଵ and ࢈ଵ parameters (see Appendix 
B). Since the regularization term in (1) involves all 
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pixels’ܽ଴ , ܽଵ and ܾଵ parameters, there is no pixel-wise 
solution and the problem must be handled for all pixels. 
Therefore, the global RLS cost function is defined as: 

ோ௅ௌܥ ൌ 	∑ ܿோ௅ௌ
௜ெ

௜ୀଵ ,   (3) 

where M is number of pixels in the oxygen tension map. 
Let ࢄ ∈ বூ௫௃ , ‖ࢄ‖ி is called as Frobenius norm in বூ௫௃ 

space and  

ி‖ࢄ‖ ൌ 

ඥݎݐሺࢄ்ࢄሻ ൌ ඥݎݐሺ்ࢄࢄሻ ൌ ට∑ ∑ ௜ܺ௝	 ௜ܺ௝
௃
௝ୀଵ

ூ
௜ୀଵ ,  (4) 

where tr() denotes trace of inner matrix. The operation 
 .ሻ is called as Frobenius inner product [17]ࢄ்ࢄሺݎݐ
Following that, the global cost function using Frobenius 
inner product can be given as follows: 

ோ௅ௌܥ ൌ 	ࢅ‖ െ ி‖ࢄ࡭	
ଶ ൅ 	ࢄ‖ߛ െ	ࢄഥ‖ி

ଶ ,   (5) 

where A is the system matrix, ߛ is the regularization 
coefficient and: 

ࢄ ൌ ቮ
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ெ

ተ
ተ
,  (6) 

where ܫ௣௜  and S are respectively pth phosphorescence 
intensity observation for ith pixel and number of 
observation per pixel. 
Considering the definition of the X, equations (2) and (5) 
can be rewritten as follows: 

࢏ഥ࢞ ൌ ሺࡷሺ݅, : ሻ்ࢄ	ሻ்,     (7) 

ோ௅ௌܥ ൌ 	ࢅ‖ െ ி‖ࢄ࡭	
ଶ ൅ 	ࢄ‖ߛ െ	ሺ்ࢄࡷ	ሻ்‖ி

ଶ .   (8) 

For the PLIM parameters, the regularization term in the 
cost function (8) can be fragmented as follows: 

	ࢄ‖ െ	ሺ்ࢄࡷ	ሻ்‖ி
ଶ ൌ 

଴ࢇ‖ 	െ ଴‖ଶࢇࡷ	
ଶ ൅ ଵࢇ‖ 	െ ଵ‖ଶࢇࡷ	

ଶ ൅ ଵ࢈‖ 	െ ଵ‖ଶ࢈ࡷ	
ଶ (9) 

The data fidelity term in equation (8) can be rewritten as: 

–	ࢅ‖ ி‖ࢄ࡭	
ଶ ൌ 

ሻࢅ்ࢅሺݎݐ െ ሻࢄ࡭்ࢅሺݎݐ2 ൅  ሻ  (10)ࢄ࡭்࡭்ࢄሺݎݐ

Since ࡭்࡭ is as follows: 

࡭்࡭ ൌ อ
ܵ 0 0
0 ܵ/2 0
0 0 ܵ/2

อ,   (11) 

where S is number of observation per pixel, ݎݐሺࢄ࡭்࡭்ࢄሻ 
becomes: 

ሻࢄ࡭்࡭்ࢄሺݎݐ ൌ ଴ࢇܵ
଴ࢇࢀ ൅

ௌ

ଶ
ଵࢇଵ்ࢇ ൅

ௌ

ଶ
 ଵ. (12)࢈ଵ்࢈

Additionally, from the definition of the Frobenius inner 
product, ݎݐሺࢄ࡭்ࢅሻ can be rewritten as follows: 

ሻࢄ࡭்ࢅሺݎݐ ൌ ሻ࡭்ࢅࢄሺݎݐ ൌ 

଴ࢇ
:ሺ࡭்ࢅࢀ ,1ሻ ൅ :ሺ࡭்ࢅࢀଵࢇ ,2ሻ ൅ :ሺ࡭்ࢅࢀଵ࢈ ,3ሻ.   (13) 

Considering the equations above, the global cost function 
can be given as: 

ோ௅ௌܥ      ൌ ሻࢅ்ࢅሺݎݐ ൅ ଴ࢇ
଴ࢇ൫ܵࢀ െ :ሺ࡭்ࢅ2 ,1ሻ൯ 

൅ࢇଵࢀ ൬
ௌ

ଶ
ଵࢇ െ :ሺ࡭்ࢅ2 ,2ሻ൰ +࢈ଵࢀ ൬

ௌ

ଶ
ଵ࢈ െ :ሺ࡭்ࢅ2 ,3ሻ൰ 

൅ߛሺ‖ࢇ଴ 	െ ଴‖ଶࢇࡷ	
ଶ ൅ ଵࢇ‖ 	െ ଵ‖ଶࢇࡷ	

ଶ ൅ ଵ࢈‖ 	െ ଵ‖ଶ࢈ࡷ	
ଶ	ሻ.  

(14) 

Finally, after taking gradient of the cost function with 
respect to ࢇଵ parameter and equalizing the gradients to 
zero, we get the RLS estimate of the ࢇଵ parameters.  

સࢇభܥோ௅ௌ ൌ ൫ܵࢇଵ െ :ሺ࡭்ࢅ2 ,2ሻ൯ 

൅2ߛሺࡵ െ ࡷ2 ൅ ଵࢇଶሻࡷ ൌ ૙.   (15) 

Further, assuming that ߛ ൌ  we can rewrite equation ,2/ߚܵ
(15) as follows: 

સࢇభܥோ௅ௌ ൌ 
൫ܵࢇଵ െ :ሺ࡭்ࢅ2 ,2ሻ൯ ൅ ࡵሺߚܵ െ ࡷ2 ൅ࡷଶሻࢇଵ ൌ ૙. 

Finally, we get 	ࢇෝଵିோ௅ௌ as: 

ෝଵିோ௅ௌࢇ ൌ ሺࡵ ൅ ࡵሺߚ െ ࡷ2 ൅ࡷଶሻሻିଵሺ
ଶ

ௌ
:ሺ࡭்ࢅ ,2ሻሻ.  (16) 

Since the same procedure is followed, we use the results of 
the  parameter ࢇଵ for the parameter ࢈ଵ. 
Considering the definition of ࡭ and its pseudo-inverse, it is 

explicit that ሺ
ଶ

ௌ
:ሺ࡭்ࢅ ,2ሻሻ and ሺ

ଶ

ௌ
:ሺ࡭்ࢅ ,3ሻሻ are the LS 

estimates of the ࢇଵ and ࢈ଵ parameters, respectively. 
Therefore, we can rewrite the RLS estimates of  ࢇଵ 
parameter as follows: 

ෝଵିோ௅ௌࢇ ൌ ሺ۷ ൅ ࡵሺߚ ൅ ࡷ்ࡷ െ  ෝଵି௅ௌ,      (17)ࢇሻି૚்ࡷെࡷ

To abbreviate the notation, we define a new matrix L as: 

ࡸ ൌ ࡵ ൅ ࡵሺߚ ൅ ࡷ்ࡷ െࡷെ்ࡷሻ,   (18) 

where, I stands for the identity matrix.  

Using the matrix L, the RLS estimates of the parameter ࢇଵ 
and ࢈ଵ can be rewritten in a simpler form as: 

ෝଵିோ௅ௌࢇ ൌ  ෝଵି௅ௌ,   (19)ࢇ૚ିࡸ

෡ଵିோ௅ௌ࢈ ൌ  ෡ଵି௅ௌ.   (20)࢈૚ିࡸ
 

A. Bias for the LS and RLS Estimators 

We modeled our observation corrupted by the additive 
zero mean i.i.d. Gaussian noise, therefore the expectation of 
the LS estimation becomes equal to: 

൛ܧ ොܽଵ
௜ ൟ ൌ ܽଵ

௜ .   (21) 
Following this fact and using (19), we can define the bias 
vector of the RLS estimator as: 

௔భܤ ൌ ଵࢇ െ ෝଵିோ௅ௌሽࢇሼܧ ൌ ଵࢇ െ  ෝଵሽࢇଵିࡸሼܧ
௔భܤ ൌ ሺࡵ െ  ଵ  (22)ࢇଵሻିࡸ

In order to facilitate visualization of the bias in graphs, we 
define a normalized scalar bias as follows: 

ݏܽ݅ܤ ൌ ሺ∑ หࢇ࡮૚ሺ࢏ሻห
ெ
௜ୀଵ ሻ/ሺ∑ |ሻ࢏૚ሺࢇ|

ெ
௜ୀଵ ሻ    (23) 
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B. Variance for the LS and RLS Estimators 

Oxygen tension depends on ratio of the model parameters 
b1 and a1 [6]. However, variance of this ratio cannot be 
found since ratio of two Gaussian distribution does not have 
a defined variance value [16]. In this regard, we only 
consider variance of a1 which is equal to variance of b1. 
We define the LS estimate of parameter vector as: 

௜࢞ ൌ ቎
ොܽ଴
௜

ොܽଵ
௜

෠ܾ
ଵ
௜

቏ ൌ :ሺࢅࡽ , ݅ሻ,          (24) 

where i denotes pixel number under consideration. 
Covariance matrix of the observation vector is equal to the 
covariance matrix of the noise. 

:ሺࢅሼݎܸܽ , ݅ሻሽ ൌ ݎܸܽ ቐ቎
݊ଵ
௜

⋮
݊ௌ
௜
቏ቑ ൌ ൥

௡ଶߪ … 0
⋮ ⋱ ⋮
0 … ௡ଶߪ

൩

ௌ௫ௌ

(25) 

௜ሽ࢞ሼݎܸܽ ൌ :ሺࢅሼݎܸܽ	ࡽ , ݅ሻሽ(26)  ்ࡽ 

Since Varሼࢅሺ: , ݅ሻሽ ൌ ௜ሽ࢞ሼݎܸܽ, ࡵ௡ଶߪ ൌ  ሻିଵ࡭்࡭௡ଶሺߪ்ࡽࡽ௡ଶߪ

ൌ ௡ଶߪ ൥
1/ܵ 0 0
0 2/ܵ 0
0 0 2/ܵ

൩ .  (27) 

Considering parameters of  i-th  pixel, as can be seen from 
Varሼx୧ሽ, cross-covariances of aො଴

୧ , aොଵ୧  and b෠ଵ୧  are equal to zero 
and their auto-covariances are ߪ௡ଶ/S , 2σ୬ଶ/S  and 2σ୬ଶ/S , 
respectively. Since there is no relationship between pixels 
in the LS estimation, auto-covariance matrix of aොଵ can be 
given as:  

ෝଵሽࢇሼݎܸܽ ൌ ሺ2ߪ௡ଶ/ܵሻࡵே௫ே.    (28) 
Turning our attention to the RLS estimation, as shown 
above, 	aොଵିୖ୐ୗ is equal to 	Lି ଵaොଵ.  Using this, we can write 
variance of  aොଵିୖ୐ୗ as: 
 

ෝଵିோ௅ௌሽࢇሼݎܸܽ ൌ 
ଵሻ்ିࡸෝଵሽሺࢇሼݎ૚ܸܽିࡸ ൌ ሺ2ߪ௡ଶ/ܵሻିࡸ૚ሺିࡸଵሻ்       (29)  

 

IV. RESULTS 

Fig.1. shows the simulated data and its estimates in the 
presence of noise with 20 dB SNR and a beta value of 10 
using the (2) LS and (3) RLS methods, respectively. This 
simulated data is used to compare MAE performances of the 
LS and RLS estimators given in Fig. 3. 

Fig.2. gives variance and normalized bias of the LS 
estimator and of the RLS estimator for different 
regularization window sizes and parameters. As the beta 
increases, variance of the RLS estimate decreases as 
expected. Variance of the LS estimate is 0.2 times the noise 
variance whereas for a beta value of 6 variance of the RLS 
estimator gets lower than 0.025 times the noise variance for 
3x3 and gets lower than 0.012 times the noise variance for 
5x5 window sizes. Increasing values of the regularization 
coefficient leads to increase in bias of the RLS estimation 
method as expected whereas helps to obtain lower variance 
values of the estimates. There exists a bias-variance 
tradeoff. Therefore, the beta cannot be selected arbitrarily 
large.  

Between two different window sizes, we see that there is a 
slight superiority of 5x5 window size over 3x3 window size 
in the variance performance of the RLS estimation method. 

However, in the bias sense, 3x3 performs considerably 
better than 5x5 window size. Therefore, in the sense of bias-
variance performance of the RLS estimation method, 3x3 
window size is more preferable than 5x5 window size. 

Additionally, as can be seen from Figure 2 that for the 
beta values greater than 5, bias performance of the RLS 
estimation method decreases rapidly whereas there is a 
relatively slow improvement in the variance performance. 
In this regard, the beta values greater than 5 may not be 
recommended.  

The phosphorescence intensity observation number which 
is an experimental set up parameter plays a key role in the 
performance of the estimators. As the observation number 
increases, performances of the both LS and RLS estimators 
increase in both MAE and variance of the estimate senses as 
shown in Figures 3 and 4. However, the experimental cost 
increases with the increasing number of the observation 
number. 

Therefore, it cannot be chosen arbitrarily large. Since the 
change in the performance of the RLS estimation method 
gets less noticeable after the observation number 10, 
observation number may be selected around 10 depending 
on the experimental cost.  

We also examined performance of the proposed method 
for different values of weighting coefficients in the 
regularization window that controls values of the matrix	ࡷ. 
In Figure 5, (1) and (2) denote the RLS estimates for two 
different 3x3 regularization windows’ l, p and q coefficients 
by considering the geometric distance and choosing 
regardless of the distance in the window as follows: 

l ൌ 2p ൌ l	 (2) ,ݍ2√	2 ൌ p ൌ q , 

where l, p and q are the coefficient of the self, adjacent and 
cross-adjacent pixels, respectively. We see that considering 
variance performances of the RLS estimation method for 
two different regularization window weighting coefficients, 
there is a negligible difference. On the other hand, for 
increased beta, bias performance of the RLS estimation 
using the second type of window decreases faster than the 
one using the first type of window. Therefore, the first type 
of window becomes more preferable when compared with 
the second type of window as expected. 
 

V. CONCLUSION 

In this work, we first derived the closed form solution for 
the RLS estimation method of retinal vascular oxygen 
tension using PLIM. Using the closed form solution, we 
derived bias and variance of the RLS estimator. With the 
help of the bias-variance analysis of the RLS estimator 
carried out in this paper, further enhancements on the 
performance of the RLS estimation method for oxygen 
tension estimation in retinal vessels can be achieved. 
Moreover, the results of this study can be applied to other 
imaging problems using PLIM or FLIM where such 
neighborhood information existing in retinal oxygenation 
problem is present.    
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Fig. 1- Simulated data (1) and its estimates in the presence of noise with 20 dB SNR and using the LS (2) and RLS (3) methods, respectively. The 
color bar represents oxygen tension in mm-Hg. 

 
Fig. 2. Comparison of relative variance and normalized bias of the LS and 
RLS estimation  methods for 5x5 and 3x3 window sizes and different beta 
values. 

 
Fig. 3. MAE of the LS and RLS estimation methods for different 
phosphorescence intensity observation numbers. 

 

 

 

 

 

 

 

 

 
Fig. 4. Variances of the LS and RLS estimation methods for different 
observation number. 

 

Fig. 5. Bias and variance of the LS and RLS estimation methods for 
different regularization windows. 
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APPENDICES 

Appendix A 

࡭																						 ൌ ൥
1 cosሺߠଵሻ sinሺߠଵሻ
⋮ ⋮ ⋮
1 cosሺߠௌሻ sinሺߠௌሻ

൩ 

࡭்࡭ ൌ ൥
ܽଵ	ଵ ܽଵ	ଶ ܽଵ	ଷ
ܽଶ	ଵ ܽଶ	ଶ ܽଶ	ଷ
ܽଷ	ଵ ܽଷ	ଶ ܽଷ	ଷ

൩, (A.1) 

where 

ܽଵ	ଵ ൌ ܵ, ܽଶ	ଶ ൌ ∑ cosሺߠ௞ሻ૛
ௌ
௞ୀଵ , ܽଷ	ଷ ൌ ∑ sinሺߠ௞ሻ૛

ௌ
௞ୀଵ ,

ܽଵ	ଶ ൌ ܽଶ	ଵ ൌ ∑ cosሺߠ௞ሻ
ௌ
௞ୀଵ , 

ܽଵ	ଷ ൌ ܽଷ	ଵ ൌ ∑ sinሺߠ௞ሻ
ௌ
௞ୀଵ ,

ܽଶ	ଷ ൌ ܽଷ	ଶ ൌ ∑ sinሺߠ௞ሻ cosሺߠ௞ሻ
ௌ
௞ୀଵ . 

If  ߠ௞ is chosen as ߠ௞ ൌ ሺ݇ߨ2 െ 1ሻ/ܵ which satisfies the 
requirement of the classical Fourier transform, then from 
the orthogonal properties of Fourier transform: ܽଵ	ଶ ൌ
ܽଶ	ଵ ൌ ܽଶ	ଷ ൌ ܽଷ	ଶ ൌ ܽଵ	ଷ ൌ ܽଷ	ଵ ൌ 0	,	ܽଵଵ ൌ ܵ and  
ܽଶ	ଶ ൌ ܽଷ	ଷ ൌ ܵ/2	.  

Then,	࡭்࡭ ൌ ൥
ܵ 0 0
0 ܵ/2 0
0 0 ܵ/2

൩	and finally: 

௜ሽ࢞ሼݎܸܽ ൌ ሻିଵ࡭்࡭௡ଶሺߪ ൌ 

௡ଶߪ ൥
1/ܵ 0 0
0 2/ܵ 0
0 0 2/ܵ

൩	.	  (A.2) 

 

Appendix B 

For 3x3 interrelation window size K is formed as: 

First we assume that interrelation window for pixels in the 
image has coefficients as: 

  อ
ݍ ݌ ݍ
݌ ݈ ݌
ݍ ݌ ݍ

อ    (B.1) 

where l, p and q denote weight of pixel to itself, weight of 
direct adjacent pixels and weight of cross adjacent pixels to 
the pixel under consideration, respectively. In order for 
mean of the weighting window to be one, we equalize these 
coefficients as: 

݈ ൌ ܽ/ሺ4 ∗ ሺܾ ൅ ܿሻ ൅ ܽሻ, 

p  ൌ ܾ/ሺ4 ∗ ሺܾ ൅ ܿሻ ൅ ܽሻ , 

ݍ ൌ ܿ/ሺ4 ∗ ሺܾ ൅ ܿሻ ൅ ܽሻ.       (B.2) 

After defining l, p and q, we form the K as follows: 

,ሺ݆ܭ ݇ሻ ൌ

ە
ۖ
۔

ۖ
ۓ
݈				݂݅		݆ ൌ ݇																	
݆		݂݅				݌ ൌ ݇ േ 1									
݆		݂݅				݌ ൌ ݇ േܯ									
݆		݂݅				ݍ ൌ ݇ ൅ܯ േ 1		
݆		݂݅				ݍ ൌ ݇ െܯ േ 1		
ۙ															݁ݏ݅ݓݎ݄݁ݐ݋				0

ۖ
ۘ

ۖ
ۗ

,   (B.3) 

where K(j,k) denotes weight coefficient of the kth pixel on 
jth pixel on the image or vice versa, and M denotes the 
number of rows. 
For the interrelation window having 5x5 size, the same 
way described above for the 3x3 window size is followed. 
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Date of modification: 13.02.14 

Change list 

 

Figures  

‐> All figures were converted to monochrome form as 

stated in 

 

‐>Fig1 caption from 

 “(1) Phantom data and its estimates in the presence 

of noise with 20 dB SNR and using the (2) LS and (3) 

RLS methods, respectively. The color bar represents 

oxygen tension in mm‐Hg.” 

To 

 “Simulated data (1) and its estimates in the presence 

of noise with 20 dB SNR and using the LS (2) and RLS 

(3) methods, respectively. The color bar represents 

oxygen tension in mm‐Hg.” 

 

‐>Fig 4 caption from 

“Variances of the LS and RLS estimators for different 

observation number.” 

To “Variances of the LS and RLS estimation methods 

for different observation number.” 

 

‐>Fig 5 caption from 

“Bias and variance of the LS estimator and of the RLS 

estimator for different regularization windows.” 

To “Bias and variance of the LS and RLS estimation 

methods for different regularization windows.” 

 

‐>Previous beta values in the Figures 3 and 4 were 2 

and 4 and we have changed them to 6 and 10 with 

the appropriate graphs. 

 

Others 

‐>In result section at the first and second lines 

“phantom” was replaced with ” simulated data”. 

 

‐> Required  spaces before the titles were added. 
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